file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
EverCrypt.DRBG.fst
EverCrypt.DRBG.instantiate_sha1
val instantiate_sha1 : instantiate_st SHA1
val instantiate_sha1 : instantiate_st SHA1
let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 69, "end_line": 142, "start_col": 0, "start_line": 142 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
EverCrypt.DRBG.instantiate_st Spec.Hash.Definitions.SHA1
Prims.Tot
[ "total" ]
[]
[ "EverCrypt.DRBG.mk_instantiate", "Spec.Hash.Definitions.SHA1", "EverCrypt.HMAC.compute_sha1" ]
[]
false
false
false
true
false
let instantiate_sha1 =
mk_instantiate EverCrypt.HMAC.compute_sha1
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.uninstantiate_sha1
val uninstantiate_sha1 : uninstantiate_st SHA1
val uninstantiate_sha1 : uninstantiate_st SHA1
let uninstantiate_sha1 = mk_uninstantiate SHA1
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 281, "start_col": 0, "start_line": 281 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256 let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384 let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512 /// Reseed function inline_for_extraction noextract val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a let mk_reseed #a hmac st additional_input additional_input_len = if additional_input_len >. max_additional_input_length then false else let entropy_input_len = min_length a in push_frame(); let entropy_input = B.alloca (u8 0) entropy_input_len in let ok = randombytes entropy_input entropy_input_len in let result = if not ok then false else begin S.hmac_input_bound a; let st_s = !*st in mk_reseed hmac (p st_s) entropy_input_len entropy_input additional_input_len additional_input; true end in pop_frame(); result (** @type: true *) val reseed_sha1 : reseed_st SHA1 (** @type: true *) val reseed_sha2_256: reseed_st SHA2_256 (** @type: true *) val reseed_sha2_384: reseed_st SHA2_384 (** @type: true *) val reseed_sha2_512: reseed_st SHA2_512 let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1 let reseed_sha2_256 = mk_reseed EverCrypt.HMAC.compute_sha2_256 let reseed_sha2_384 = mk_reseed EverCrypt.HMAC.compute_sha2_384 let reseed_sha2_512 = mk_reseed EverCrypt.HMAC.compute_sha2_512 /// Generate function inline_for_extraction noextract val mk_generate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> generate_st a let mk_generate #a hmac output st n additional_input additional_input_len = if additional_input_len >. max_additional_input_length || n >. max_output_length then false else ( push_frame(); let ok = mk_reseed hmac st additional_input additional_input_len in let result = if not ok then false else begin let st_s = !*st in let b = mk_generate hmac output (p st_s) n additional_input_len additional_input in b (* This used to be true, which is fishy *) end in let h1 = get () in pop_frame(); let h2 = get () in frame_invariant (B.loc_all_regions_from false (HS.get_tip h1)) st h1 h2; result ) (** @type: true *) val generate_sha1 : generate_st SHA1 (** @type: true *) val generate_sha2_256: generate_st SHA2_256 (** @type: true *) val generate_sha2_384: generate_st SHA2_384 (** @type: true *) val generate_sha2_512: generate_st SHA2_512 let generate_sha1 = mk_generate EverCrypt.HMAC.compute_sha1 let generate_sha2_256 = mk_generate EverCrypt.HMAC.compute_sha2_256 let generate_sha2_384 = mk_generate EverCrypt.HMAC.compute_sha2_384 let generate_sha2_512 = mk_generate EverCrypt.HMAC.compute_sha2_512 /// Uninstantiate function inline_for_extraction noextract val mk_uninstantiate: a:supported_alg -> uninstantiate_st a let mk_uninstantiate a st = let st_s:state_s a = !*st in let s:Hacl.HMAC_DRBG.state a = p st_s in let k:B.buffer uint8 = s.k in let v:B.buffer uint8 = s.v in let ctr:B.buffer size_t = s.reseed_counter in assert (B.disjoint k v /\ B.disjoint k ctr /\ B.disjoint v ctr); assert (B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s st_s)); Lib.Memzero0.memzero k (hash_len a); Lib.Memzero0.memzero v (hash_len a); ctr.(0ul) <- 0ul; B.free k; B.free v; B.free ctr; B.free st (** @type: true *) val uninstantiate_sha1 : uninstantiate_st SHA1 (** @type: true *) val uninstantiate_sha2_256: uninstantiate_st SHA2_256 (** @type: true *) val uninstantiate_sha2_384: uninstantiate_st SHA2_384 (** @type: true *) val uninstantiate_sha2_512: uninstantiate_st SHA2_512
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
EverCrypt.DRBG.uninstantiate_st Spec.Hash.Definitions.SHA1
Prims.Tot
[ "total" ]
[]
[ "EverCrypt.DRBG.mk_uninstantiate", "Spec.Hash.Definitions.SHA1" ]
[]
false
false
false
true
false
let uninstantiate_sha1 =
mk_uninstantiate SHA1
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.create
val create: a:supported_alg -> ST (state a) (requires fun _ -> True) (ensures fun h0 st h1 -> B.modifies B.loc_none h0 h1 /\ B.fresh_loc (footprint st h1) h0 h1 /\ invariant st h1 /\ freeable st h1)
val create: a:supported_alg -> ST (state a) (requires fun _ -> True) (ensures fun h0 st h1 -> B.modifies B.loc_none h0 h1 /\ B.fresh_loc (footprint st h1) h0 h1 /\ invariant st h1 /\ freeable st h1)
let create a = create_in a HS.root
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 34, "end_line": 90, "start_col": 0, "start_line": 90 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.HMAC_DRBG.supported_alg -> FStar.HyperStack.ST.ST (EverCrypt.DRBG.state a)
FStar.HyperStack.ST.ST
[]
[]
[ "Hacl.HMAC_DRBG.supported_alg", "EverCrypt.DRBG.create_in", "FStar.Monotonic.HyperHeap.root", "EverCrypt.DRBG.state" ]
[]
false
true
false
false
false
let create a =
create_in a HS.root
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.uninstantiate_sha2_256
val uninstantiate_sha2_256: uninstantiate_st SHA2_256
val uninstantiate_sha2_256: uninstantiate_st SHA2_256
let uninstantiate_sha2_256 = mk_uninstantiate SHA2_256
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 282, "start_col": 0, "start_line": 282 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256 let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384 let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512 /// Reseed function inline_for_extraction noextract val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a let mk_reseed #a hmac st additional_input additional_input_len = if additional_input_len >. max_additional_input_length then false else let entropy_input_len = min_length a in push_frame(); let entropy_input = B.alloca (u8 0) entropy_input_len in let ok = randombytes entropy_input entropy_input_len in let result = if not ok then false else begin S.hmac_input_bound a; let st_s = !*st in mk_reseed hmac (p st_s) entropy_input_len entropy_input additional_input_len additional_input; true end in pop_frame(); result (** @type: true *) val reseed_sha1 : reseed_st SHA1 (** @type: true *) val reseed_sha2_256: reseed_st SHA2_256 (** @type: true *) val reseed_sha2_384: reseed_st SHA2_384 (** @type: true *) val reseed_sha2_512: reseed_st SHA2_512 let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1 let reseed_sha2_256 = mk_reseed EverCrypt.HMAC.compute_sha2_256 let reseed_sha2_384 = mk_reseed EverCrypt.HMAC.compute_sha2_384 let reseed_sha2_512 = mk_reseed EverCrypt.HMAC.compute_sha2_512 /// Generate function inline_for_extraction noextract val mk_generate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> generate_st a let mk_generate #a hmac output st n additional_input additional_input_len = if additional_input_len >. max_additional_input_length || n >. max_output_length then false else ( push_frame(); let ok = mk_reseed hmac st additional_input additional_input_len in let result = if not ok then false else begin let st_s = !*st in let b = mk_generate hmac output (p st_s) n additional_input_len additional_input in b (* This used to be true, which is fishy *) end in let h1 = get () in pop_frame(); let h2 = get () in frame_invariant (B.loc_all_regions_from false (HS.get_tip h1)) st h1 h2; result ) (** @type: true *) val generate_sha1 : generate_st SHA1 (** @type: true *) val generate_sha2_256: generate_st SHA2_256 (** @type: true *) val generate_sha2_384: generate_st SHA2_384 (** @type: true *) val generate_sha2_512: generate_st SHA2_512 let generate_sha1 = mk_generate EverCrypt.HMAC.compute_sha1 let generate_sha2_256 = mk_generate EverCrypt.HMAC.compute_sha2_256 let generate_sha2_384 = mk_generate EverCrypt.HMAC.compute_sha2_384 let generate_sha2_512 = mk_generate EverCrypt.HMAC.compute_sha2_512 /// Uninstantiate function inline_for_extraction noextract val mk_uninstantiate: a:supported_alg -> uninstantiate_st a let mk_uninstantiate a st = let st_s:state_s a = !*st in let s:Hacl.HMAC_DRBG.state a = p st_s in let k:B.buffer uint8 = s.k in let v:B.buffer uint8 = s.v in let ctr:B.buffer size_t = s.reseed_counter in assert (B.disjoint k v /\ B.disjoint k ctr /\ B.disjoint v ctr); assert (B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s st_s)); Lib.Memzero0.memzero k (hash_len a); Lib.Memzero0.memzero v (hash_len a); ctr.(0ul) <- 0ul; B.free k; B.free v; B.free ctr; B.free st (** @type: true *) val uninstantiate_sha1 : uninstantiate_st SHA1 (** @type: true *) val uninstantiate_sha2_256: uninstantiate_st SHA2_256 (** @type: true *) val uninstantiate_sha2_384: uninstantiate_st SHA2_384 (** @type: true *) val uninstantiate_sha2_512: uninstantiate_st SHA2_512
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
EverCrypt.DRBG.uninstantiate_st Spec.Hash.Definitions.SHA2_256
Prims.Tot
[ "total" ]
[]
[ "EverCrypt.DRBG.mk_uninstantiate", "Spec.Hash.Definitions.SHA2_256" ]
[]
false
false
false
true
false
let uninstantiate_sha2_256 =
mk_uninstantiate SHA2_256
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.reseed_sha2_512
val reseed_sha2_512: reseed_st SHA2_512
val reseed_sha2_512: reseed_st SHA2_512
let reseed_sha2_512 = mk_reseed EverCrypt.HMAC.compute_sha2_512
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 195, "start_col": 0, "start_line": 195 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256 let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384 let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512 /// Reseed function inline_for_extraction noextract val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a let mk_reseed #a hmac st additional_input additional_input_len = if additional_input_len >. max_additional_input_length then false else let entropy_input_len = min_length a in push_frame(); let entropy_input = B.alloca (u8 0) entropy_input_len in let ok = randombytes entropy_input entropy_input_len in let result = if not ok then false else begin S.hmac_input_bound a; let st_s = !*st in mk_reseed hmac (p st_s) entropy_input_len entropy_input additional_input_len additional_input; true end in pop_frame(); result (** @type: true *) val reseed_sha1 : reseed_st SHA1 (** @type: true *) val reseed_sha2_256: reseed_st SHA2_256 (** @type: true *) val reseed_sha2_384: reseed_st SHA2_384 (** @type: true *) val reseed_sha2_512: reseed_st SHA2_512 let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1 let reseed_sha2_256 = mk_reseed EverCrypt.HMAC.compute_sha2_256
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
EverCrypt.DRBG.reseed_st Spec.Hash.Definitions.SHA2_512
Prims.Tot
[ "total" ]
[]
[ "EverCrypt.DRBG.mk_reseed", "Spec.Hash.Definitions.SHA2_512", "EverCrypt.HMAC.compute_sha2_512" ]
[]
false
false
false
true
false
let reseed_sha2_512 =
mk_reseed EverCrypt.HMAC.compute_sha2_512
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.instantiate
val instantiate: a:(Ghost.erased supported_alg) -> instantiate_st (Ghost.reveal a)
val instantiate: a:(Ghost.erased supported_alg) -> instantiate_st (Ghost.reveal a)
let instantiate a st personalization_string personalization_string_len = match !*st with | SHA1_s _ -> instantiate_sha1 st personalization_string personalization_string_len | SHA2_256_s _ -> instantiate_sha2_256 st personalization_string personalization_string_len | SHA2_384_s _ -> instantiate_sha2_384 st personalization_string personalization_string_len | SHA2_512_s _ -> instantiate_sha2_512 st personalization_string personalization_string_len
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 93, "end_line": 294, "start_col": 0, "start_line": 289 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256 let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384 let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512 /// Reseed function inline_for_extraction noextract val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a let mk_reseed #a hmac st additional_input additional_input_len = if additional_input_len >. max_additional_input_length then false else let entropy_input_len = min_length a in push_frame(); let entropy_input = B.alloca (u8 0) entropy_input_len in let ok = randombytes entropy_input entropy_input_len in let result = if not ok then false else begin S.hmac_input_bound a; let st_s = !*st in mk_reseed hmac (p st_s) entropy_input_len entropy_input additional_input_len additional_input; true end in pop_frame(); result (** @type: true *) val reseed_sha1 : reseed_st SHA1 (** @type: true *) val reseed_sha2_256: reseed_st SHA2_256 (** @type: true *) val reseed_sha2_384: reseed_st SHA2_384 (** @type: true *) val reseed_sha2_512: reseed_st SHA2_512 let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1 let reseed_sha2_256 = mk_reseed EverCrypt.HMAC.compute_sha2_256 let reseed_sha2_384 = mk_reseed EverCrypt.HMAC.compute_sha2_384 let reseed_sha2_512 = mk_reseed EverCrypt.HMAC.compute_sha2_512 /// Generate function inline_for_extraction noextract val mk_generate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> generate_st a let mk_generate #a hmac output st n additional_input additional_input_len = if additional_input_len >. max_additional_input_length || n >. max_output_length then false else ( push_frame(); let ok = mk_reseed hmac st additional_input additional_input_len in let result = if not ok then false else begin let st_s = !*st in let b = mk_generate hmac output (p st_s) n additional_input_len additional_input in b (* This used to be true, which is fishy *) end in let h1 = get () in pop_frame(); let h2 = get () in frame_invariant (B.loc_all_regions_from false (HS.get_tip h1)) st h1 h2; result ) (** @type: true *) val generate_sha1 : generate_st SHA1 (** @type: true *) val generate_sha2_256: generate_st SHA2_256 (** @type: true *) val generate_sha2_384: generate_st SHA2_384 (** @type: true *) val generate_sha2_512: generate_st SHA2_512 let generate_sha1 = mk_generate EverCrypt.HMAC.compute_sha1 let generate_sha2_256 = mk_generate EverCrypt.HMAC.compute_sha2_256 let generate_sha2_384 = mk_generate EverCrypt.HMAC.compute_sha2_384 let generate_sha2_512 = mk_generate EverCrypt.HMAC.compute_sha2_512 /// Uninstantiate function inline_for_extraction noextract val mk_uninstantiate: a:supported_alg -> uninstantiate_st a let mk_uninstantiate a st = let st_s:state_s a = !*st in let s:Hacl.HMAC_DRBG.state a = p st_s in let k:B.buffer uint8 = s.k in let v:B.buffer uint8 = s.v in let ctr:B.buffer size_t = s.reseed_counter in assert (B.disjoint k v /\ B.disjoint k ctr /\ B.disjoint v ctr); assert (B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s st_s)); Lib.Memzero0.memzero k (hash_len a); Lib.Memzero0.memzero v (hash_len a); ctr.(0ul) <- 0ul; B.free k; B.free v; B.free ctr; B.free st (** @type: true *) val uninstantiate_sha1 : uninstantiate_st SHA1 (** @type: true *) val uninstantiate_sha2_256: uninstantiate_st SHA2_256 (** @type: true *) val uninstantiate_sha2_384: uninstantiate_st SHA2_384 (** @type: true *) val uninstantiate_sha2_512: uninstantiate_st SHA2_512 let uninstantiate_sha1 = mk_uninstantiate SHA1 let uninstantiate_sha2_256 = mk_uninstantiate SHA2_256 let uninstantiate_sha2_384 = mk_uninstantiate SHA2_384 let uninstantiate_sha2_512 = mk_uninstantiate SHA2_512 /// Agile variants that dispatch dynamically to the appropriate monomorphic variants above
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Ghost.erased Hacl.HMAC_DRBG.supported_alg -> EverCrypt.DRBG.instantiate_st (FStar.Ghost.reveal a)
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "Hacl.HMAC_DRBG.supported_alg", "EverCrypt.DRBG.state", "FStar.Ghost.reveal", "LowStar.Buffer.buffer", "Lib.IntTypes.uint8", "Lib.IntTypes.size_t", "Hacl.HMAC_DRBG.state", "Spec.Hash.Definitions.SHA1", "EverCrypt.DRBG.instantiate_sha1", "Prims.bool", "Spec.Hash.Definitions.SHA2_256", "EverCrypt.DRBG.instantiate_sha2_256", "Spec.Hash.Definitions.SHA2_384", "EverCrypt.DRBG.instantiate_sha2_384", "Spec.Hash.Definitions.SHA2_512", "EverCrypt.DRBG.instantiate_sha2_512", "EverCrypt.DRBG.state_s", "Spec.HMAC_DRBG.supported_alg", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let instantiate a st personalization_string personalization_string_len =
match !*st with | SHA1_s _ -> instantiate_sha1 st personalization_string personalization_string_len | SHA2_256_s _ -> instantiate_sha2_256 st personalization_string personalization_string_len | SHA2_384_s _ -> instantiate_sha2_384 st personalization_string personalization_string_len | SHA2_512_s _ -> instantiate_sha2_512 st personalization_string personalization_string_len
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.generate_sha2_512
val generate_sha2_512: generate_st SHA2_512
val generate_sha2_512: generate_st SHA2_512
let generate_sha2_512 = mk_generate EverCrypt.HMAC.compute_sha2_512
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 67, "end_line": 243, "start_col": 0, "start_line": 243 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256 let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384 let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512 /// Reseed function inline_for_extraction noextract val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a let mk_reseed #a hmac st additional_input additional_input_len = if additional_input_len >. max_additional_input_length then false else let entropy_input_len = min_length a in push_frame(); let entropy_input = B.alloca (u8 0) entropy_input_len in let ok = randombytes entropy_input entropy_input_len in let result = if not ok then false else begin S.hmac_input_bound a; let st_s = !*st in mk_reseed hmac (p st_s) entropy_input_len entropy_input additional_input_len additional_input; true end in pop_frame(); result (** @type: true *) val reseed_sha1 : reseed_st SHA1 (** @type: true *) val reseed_sha2_256: reseed_st SHA2_256 (** @type: true *) val reseed_sha2_384: reseed_st SHA2_384 (** @type: true *) val reseed_sha2_512: reseed_st SHA2_512 let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1 let reseed_sha2_256 = mk_reseed EverCrypt.HMAC.compute_sha2_256 let reseed_sha2_384 = mk_reseed EverCrypt.HMAC.compute_sha2_384 let reseed_sha2_512 = mk_reseed EverCrypt.HMAC.compute_sha2_512 /// Generate function inline_for_extraction noextract val mk_generate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> generate_st a let mk_generate #a hmac output st n additional_input additional_input_len = if additional_input_len >. max_additional_input_length || n >. max_output_length then false else ( push_frame(); let ok = mk_reseed hmac st additional_input additional_input_len in let result = if not ok then false else begin let st_s = !*st in let b = mk_generate hmac output (p st_s) n additional_input_len additional_input in b (* This used to be true, which is fishy *) end in let h1 = get () in pop_frame(); let h2 = get () in frame_invariant (B.loc_all_regions_from false (HS.get_tip h1)) st h1 h2; result ) (** @type: true *) val generate_sha1 : generate_st SHA1 (** @type: true *) val generate_sha2_256: generate_st SHA2_256 (** @type: true *) val generate_sha2_384: generate_st SHA2_384 (** @type: true *) val generate_sha2_512: generate_st SHA2_512 let generate_sha1 = mk_generate EverCrypt.HMAC.compute_sha1 let generate_sha2_256 = mk_generate EverCrypt.HMAC.compute_sha2_256
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
EverCrypt.DRBG.generate_st Spec.Hash.Definitions.SHA2_512
Prims.Tot
[ "total" ]
[]
[ "EverCrypt.DRBG.mk_generate", "Spec.Hash.Definitions.SHA2_512", "EverCrypt.HMAC.compute_sha2_512" ]
[]
false
false
false
true
false
let generate_sha2_512 =
mk_generate EverCrypt.HMAC.compute_sha2_512
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.instantiate_sha2_512
val instantiate_sha2_512: instantiate_st SHA2_512
val instantiate_sha2_512: instantiate_st SHA2_512
let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 73, "end_line": 145, "start_col": 0, "start_line": 145 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
EverCrypt.DRBG.instantiate_st Spec.Hash.Definitions.SHA2_512
Prims.Tot
[ "total" ]
[]
[ "EverCrypt.DRBG.mk_instantiate", "Spec.Hash.Definitions.SHA2_512", "EverCrypt.HMAC.compute_sha2_512" ]
[]
false
false
false
true
false
let instantiate_sha2_512 =
mk_instantiate EverCrypt.HMAC.compute_sha2_512
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.reseed
val reseed: a:(Ghost.erased supported_alg) -> reseed_st (Ghost.reveal a)
val reseed: a:(Ghost.erased supported_alg) -> reseed_st (Ghost.reveal a)
let reseed a st additional_input additional_input_len = match !*st with | SHA1_s _ -> reseed_sha1 st additional_input additional_input_len | SHA2_256_s _ -> reseed_sha2_256 st additional_input additional_input_len | SHA2_384_s _ -> reseed_sha2_384 st additional_input additional_input_len | SHA2_512_s _ -> reseed_sha2_512 st additional_input additional_input_len
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 76, "end_line": 301, "start_col": 0, "start_line": 296 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256 let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384 let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512 /// Reseed function inline_for_extraction noextract val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a let mk_reseed #a hmac st additional_input additional_input_len = if additional_input_len >. max_additional_input_length then false else let entropy_input_len = min_length a in push_frame(); let entropy_input = B.alloca (u8 0) entropy_input_len in let ok = randombytes entropy_input entropy_input_len in let result = if not ok then false else begin S.hmac_input_bound a; let st_s = !*st in mk_reseed hmac (p st_s) entropy_input_len entropy_input additional_input_len additional_input; true end in pop_frame(); result (** @type: true *) val reseed_sha1 : reseed_st SHA1 (** @type: true *) val reseed_sha2_256: reseed_st SHA2_256 (** @type: true *) val reseed_sha2_384: reseed_st SHA2_384 (** @type: true *) val reseed_sha2_512: reseed_st SHA2_512 let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1 let reseed_sha2_256 = mk_reseed EverCrypt.HMAC.compute_sha2_256 let reseed_sha2_384 = mk_reseed EverCrypt.HMAC.compute_sha2_384 let reseed_sha2_512 = mk_reseed EverCrypt.HMAC.compute_sha2_512 /// Generate function inline_for_extraction noextract val mk_generate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> generate_st a let mk_generate #a hmac output st n additional_input additional_input_len = if additional_input_len >. max_additional_input_length || n >. max_output_length then false else ( push_frame(); let ok = mk_reseed hmac st additional_input additional_input_len in let result = if not ok then false else begin let st_s = !*st in let b = mk_generate hmac output (p st_s) n additional_input_len additional_input in b (* This used to be true, which is fishy *) end in let h1 = get () in pop_frame(); let h2 = get () in frame_invariant (B.loc_all_regions_from false (HS.get_tip h1)) st h1 h2; result ) (** @type: true *) val generate_sha1 : generate_st SHA1 (** @type: true *) val generate_sha2_256: generate_st SHA2_256 (** @type: true *) val generate_sha2_384: generate_st SHA2_384 (** @type: true *) val generate_sha2_512: generate_st SHA2_512 let generate_sha1 = mk_generate EverCrypt.HMAC.compute_sha1 let generate_sha2_256 = mk_generate EverCrypt.HMAC.compute_sha2_256 let generate_sha2_384 = mk_generate EverCrypt.HMAC.compute_sha2_384 let generate_sha2_512 = mk_generate EverCrypt.HMAC.compute_sha2_512 /// Uninstantiate function inline_for_extraction noextract val mk_uninstantiate: a:supported_alg -> uninstantiate_st a let mk_uninstantiate a st = let st_s:state_s a = !*st in let s:Hacl.HMAC_DRBG.state a = p st_s in let k:B.buffer uint8 = s.k in let v:B.buffer uint8 = s.v in let ctr:B.buffer size_t = s.reseed_counter in assert (B.disjoint k v /\ B.disjoint k ctr /\ B.disjoint v ctr); assert (B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s st_s)); Lib.Memzero0.memzero k (hash_len a); Lib.Memzero0.memzero v (hash_len a); ctr.(0ul) <- 0ul; B.free k; B.free v; B.free ctr; B.free st (** @type: true *) val uninstantiate_sha1 : uninstantiate_st SHA1 (** @type: true *) val uninstantiate_sha2_256: uninstantiate_st SHA2_256 (** @type: true *) val uninstantiate_sha2_384: uninstantiate_st SHA2_384 (** @type: true *) val uninstantiate_sha2_512: uninstantiate_st SHA2_512 let uninstantiate_sha1 = mk_uninstantiate SHA1 let uninstantiate_sha2_256 = mk_uninstantiate SHA2_256 let uninstantiate_sha2_384 = mk_uninstantiate SHA2_384 let uninstantiate_sha2_512 = mk_uninstantiate SHA2_512 /// Agile variants that dispatch dynamically to the appropriate monomorphic variants above let instantiate a st personalization_string personalization_string_len = match !*st with | SHA1_s _ -> instantiate_sha1 st personalization_string personalization_string_len | SHA2_256_s _ -> instantiate_sha2_256 st personalization_string personalization_string_len | SHA2_384_s _ -> instantiate_sha2_384 st personalization_string personalization_string_len | SHA2_512_s _ -> instantiate_sha2_512 st personalization_string personalization_string_len
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Ghost.erased Hacl.HMAC_DRBG.supported_alg -> EverCrypt.DRBG.reseed_st (FStar.Ghost.reveal a)
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "Hacl.HMAC_DRBG.supported_alg", "EverCrypt.DRBG.state", "FStar.Ghost.reveal", "LowStar.Buffer.buffer", "Lib.IntTypes.uint8", "Lib.IntTypes.size_t", "Hacl.HMAC_DRBG.state", "Spec.Hash.Definitions.SHA1", "EverCrypt.DRBG.reseed_sha1", "Prims.bool", "Spec.Hash.Definitions.SHA2_256", "EverCrypt.DRBG.reseed_sha2_256", "Spec.Hash.Definitions.SHA2_384", "EverCrypt.DRBG.reseed_sha2_384", "Spec.Hash.Definitions.SHA2_512", "EverCrypt.DRBG.reseed_sha2_512", "EverCrypt.DRBG.state_s", "Spec.HMAC_DRBG.supported_alg", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let reseed a st additional_input additional_input_len =
match !*st with | SHA1_s _ -> reseed_sha1 st additional_input additional_input_len | SHA2_256_s _ -> reseed_sha2_256 st additional_input additional_input_len | SHA2_384_s _ -> reseed_sha2_384 st additional_input additional_input_len | SHA2_512_s _ -> reseed_sha2_512 st additional_input additional_input_len
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.instantiate_sha2_384
val instantiate_sha2_384: instantiate_st SHA2_384
val instantiate_sha2_384: instantiate_st SHA2_384
let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 73, "end_line": 144, "start_col": 0, "start_line": 144 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
EverCrypt.DRBG.instantiate_st Spec.Hash.Definitions.SHA2_384
Prims.Tot
[ "total" ]
[]
[ "EverCrypt.DRBG.mk_instantiate", "Spec.Hash.Definitions.SHA2_384", "EverCrypt.HMAC.compute_sha2_384" ]
[]
false
false
false
true
false
let instantiate_sha2_384 =
mk_instantiate EverCrypt.HMAC.compute_sha2_384
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.uninstantiate_sha2_384
val uninstantiate_sha2_384: uninstantiate_st SHA2_384
val uninstantiate_sha2_384: uninstantiate_st SHA2_384
let uninstantiate_sha2_384 = mk_uninstantiate SHA2_384
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 283, "start_col": 0, "start_line": 283 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256 let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384 let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512 /// Reseed function inline_for_extraction noextract val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a let mk_reseed #a hmac st additional_input additional_input_len = if additional_input_len >. max_additional_input_length then false else let entropy_input_len = min_length a in push_frame(); let entropy_input = B.alloca (u8 0) entropy_input_len in let ok = randombytes entropy_input entropy_input_len in let result = if not ok then false else begin S.hmac_input_bound a; let st_s = !*st in mk_reseed hmac (p st_s) entropy_input_len entropy_input additional_input_len additional_input; true end in pop_frame(); result (** @type: true *) val reseed_sha1 : reseed_st SHA1 (** @type: true *) val reseed_sha2_256: reseed_st SHA2_256 (** @type: true *) val reseed_sha2_384: reseed_st SHA2_384 (** @type: true *) val reseed_sha2_512: reseed_st SHA2_512 let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1 let reseed_sha2_256 = mk_reseed EverCrypt.HMAC.compute_sha2_256 let reseed_sha2_384 = mk_reseed EverCrypt.HMAC.compute_sha2_384 let reseed_sha2_512 = mk_reseed EverCrypt.HMAC.compute_sha2_512 /// Generate function inline_for_extraction noextract val mk_generate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> generate_st a let mk_generate #a hmac output st n additional_input additional_input_len = if additional_input_len >. max_additional_input_length || n >. max_output_length then false else ( push_frame(); let ok = mk_reseed hmac st additional_input additional_input_len in let result = if not ok then false else begin let st_s = !*st in let b = mk_generate hmac output (p st_s) n additional_input_len additional_input in b (* This used to be true, which is fishy *) end in let h1 = get () in pop_frame(); let h2 = get () in frame_invariant (B.loc_all_regions_from false (HS.get_tip h1)) st h1 h2; result ) (** @type: true *) val generate_sha1 : generate_st SHA1 (** @type: true *) val generate_sha2_256: generate_st SHA2_256 (** @type: true *) val generate_sha2_384: generate_st SHA2_384 (** @type: true *) val generate_sha2_512: generate_st SHA2_512 let generate_sha1 = mk_generate EverCrypt.HMAC.compute_sha1 let generate_sha2_256 = mk_generate EverCrypt.HMAC.compute_sha2_256 let generate_sha2_384 = mk_generate EverCrypt.HMAC.compute_sha2_384 let generate_sha2_512 = mk_generate EverCrypt.HMAC.compute_sha2_512 /// Uninstantiate function inline_for_extraction noextract val mk_uninstantiate: a:supported_alg -> uninstantiate_st a let mk_uninstantiate a st = let st_s:state_s a = !*st in let s:Hacl.HMAC_DRBG.state a = p st_s in let k:B.buffer uint8 = s.k in let v:B.buffer uint8 = s.v in let ctr:B.buffer size_t = s.reseed_counter in assert (B.disjoint k v /\ B.disjoint k ctr /\ B.disjoint v ctr); assert (B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s st_s)); Lib.Memzero0.memzero k (hash_len a); Lib.Memzero0.memzero v (hash_len a); ctr.(0ul) <- 0ul; B.free k; B.free v; B.free ctr; B.free st (** @type: true *) val uninstantiate_sha1 : uninstantiate_st SHA1 (** @type: true *) val uninstantiate_sha2_256: uninstantiate_st SHA2_256 (** @type: true *) val uninstantiate_sha2_384: uninstantiate_st SHA2_384 (** @type: true *) val uninstantiate_sha2_512: uninstantiate_st SHA2_512 let uninstantiate_sha1 = mk_uninstantiate SHA1
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
EverCrypt.DRBG.uninstantiate_st Spec.Hash.Definitions.SHA2_384
Prims.Tot
[ "total" ]
[]
[ "EverCrypt.DRBG.mk_uninstantiate", "Spec.Hash.Definitions.SHA2_384" ]
[]
false
false
false
true
false
let uninstantiate_sha2_384 =
mk_uninstantiate SHA2_384
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.generate
val generate: a:(Ghost.erased supported_alg) -> generate_st (Ghost.reveal a)
val generate: a:(Ghost.erased supported_alg) -> generate_st (Ghost.reveal a)
let generate a output st n additional_input additional_input_len = match !*st with | SHA1_s _ -> generate_sha1 output st n additional_input additional_input_len | SHA2_256_s _ -> generate_sha2_256 output st n additional_input additional_input_len | SHA2_384_s _ -> generate_sha2_384 output st n additional_input additional_input_len | SHA2_512_s _ -> generate_sha2_512 output st n additional_input additional_input_len
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 87, "end_line": 308, "start_col": 0, "start_line": 303 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256 let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384 let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512 /// Reseed function inline_for_extraction noextract val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a let mk_reseed #a hmac st additional_input additional_input_len = if additional_input_len >. max_additional_input_length then false else let entropy_input_len = min_length a in push_frame(); let entropy_input = B.alloca (u8 0) entropy_input_len in let ok = randombytes entropy_input entropy_input_len in let result = if not ok then false else begin S.hmac_input_bound a; let st_s = !*st in mk_reseed hmac (p st_s) entropy_input_len entropy_input additional_input_len additional_input; true end in pop_frame(); result (** @type: true *) val reseed_sha1 : reseed_st SHA1 (** @type: true *) val reseed_sha2_256: reseed_st SHA2_256 (** @type: true *) val reseed_sha2_384: reseed_st SHA2_384 (** @type: true *) val reseed_sha2_512: reseed_st SHA2_512 let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1 let reseed_sha2_256 = mk_reseed EverCrypt.HMAC.compute_sha2_256 let reseed_sha2_384 = mk_reseed EverCrypt.HMAC.compute_sha2_384 let reseed_sha2_512 = mk_reseed EverCrypt.HMAC.compute_sha2_512 /// Generate function inline_for_extraction noextract val mk_generate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> generate_st a let mk_generate #a hmac output st n additional_input additional_input_len = if additional_input_len >. max_additional_input_length || n >. max_output_length then false else ( push_frame(); let ok = mk_reseed hmac st additional_input additional_input_len in let result = if not ok then false else begin let st_s = !*st in let b = mk_generate hmac output (p st_s) n additional_input_len additional_input in b (* This used to be true, which is fishy *) end in let h1 = get () in pop_frame(); let h2 = get () in frame_invariant (B.loc_all_regions_from false (HS.get_tip h1)) st h1 h2; result ) (** @type: true *) val generate_sha1 : generate_st SHA1 (** @type: true *) val generate_sha2_256: generate_st SHA2_256 (** @type: true *) val generate_sha2_384: generate_st SHA2_384 (** @type: true *) val generate_sha2_512: generate_st SHA2_512 let generate_sha1 = mk_generate EverCrypt.HMAC.compute_sha1 let generate_sha2_256 = mk_generate EverCrypt.HMAC.compute_sha2_256 let generate_sha2_384 = mk_generate EverCrypt.HMAC.compute_sha2_384 let generate_sha2_512 = mk_generate EverCrypt.HMAC.compute_sha2_512 /// Uninstantiate function inline_for_extraction noextract val mk_uninstantiate: a:supported_alg -> uninstantiate_st a let mk_uninstantiate a st = let st_s:state_s a = !*st in let s:Hacl.HMAC_DRBG.state a = p st_s in let k:B.buffer uint8 = s.k in let v:B.buffer uint8 = s.v in let ctr:B.buffer size_t = s.reseed_counter in assert (B.disjoint k v /\ B.disjoint k ctr /\ B.disjoint v ctr); assert (B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s st_s)); Lib.Memzero0.memzero k (hash_len a); Lib.Memzero0.memzero v (hash_len a); ctr.(0ul) <- 0ul; B.free k; B.free v; B.free ctr; B.free st (** @type: true *) val uninstantiate_sha1 : uninstantiate_st SHA1 (** @type: true *) val uninstantiate_sha2_256: uninstantiate_st SHA2_256 (** @type: true *) val uninstantiate_sha2_384: uninstantiate_st SHA2_384 (** @type: true *) val uninstantiate_sha2_512: uninstantiate_st SHA2_512 let uninstantiate_sha1 = mk_uninstantiate SHA1 let uninstantiate_sha2_256 = mk_uninstantiate SHA2_256 let uninstantiate_sha2_384 = mk_uninstantiate SHA2_384 let uninstantiate_sha2_512 = mk_uninstantiate SHA2_512 /// Agile variants that dispatch dynamically to the appropriate monomorphic variants above let instantiate a st personalization_string personalization_string_len = match !*st with | SHA1_s _ -> instantiate_sha1 st personalization_string personalization_string_len | SHA2_256_s _ -> instantiate_sha2_256 st personalization_string personalization_string_len | SHA2_384_s _ -> instantiate_sha2_384 st personalization_string personalization_string_len | SHA2_512_s _ -> instantiate_sha2_512 st personalization_string personalization_string_len let reseed a st additional_input additional_input_len = match !*st with | SHA1_s _ -> reseed_sha1 st additional_input additional_input_len | SHA2_256_s _ -> reseed_sha2_256 st additional_input additional_input_len | SHA2_384_s _ -> reseed_sha2_384 st additional_input additional_input_len | SHA2_512_s _ -> reseed_sha2_512 st additional_input additional_input_len
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Ghost.erased Hacl.HMAC_DRBG.supported_alg -> EverCrypt.DRBG.generate_st (FStar.Ghost.reveal a)
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "Hacl.HMAC_DRBG.supported_alg", "LowStar.Buffer.buffer", "Lib.IntTypes.uint8", "EverCrypt.DRBG.state", "FStar.Ghost.reveal", "Lib.IntTypes.size_t", "Hacl.HMAC_DRBG.state", "Spec.Hash.Definitions.SHA1", "EverCrypt.DRBG.generate_sha1", "Prims.bool", "Spec.Hash.Definitions.SHA2_256", "EverCrypt.DRBG.generate_sha2_256", "Spec.Hash.Definitions.SHA2_384", "EverCrypt.DRBG.generate_sha2_384", "Spec.Hash.Definitions.SHA2_512", "EverCrypt.DRBG.generate_sha2_512", "EverCrypt.DRBG.state_s", "Spec.HMAC_DRBG.supported_alg", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let generate a output st n additional_input additional_input_len =
match !*st with | SHA1_s _ -> generate_sha1 output st n additional_input additional_input_len | SHA2_256_s _ -> generate_sha2_256 output st n additional_input additional_input_len | SHA2_384_s _ -> generate_sha2_384 output st n additional_input additional_input_len | SHA2_512_s _ -> generate_sha2_512 output st n additional_input additional_input_len
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.uninstantiate_sha2_512
val uninstantiate_sha2_512: uninstantiate_st SHA2_512
val uninstantiate_sha2_512: uninstantiate_st SHA2_512
let uninstantiate_sha2_512 = mk_uninstantiate SHA2_512
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 284, "start_col": 0, "start_line": 284 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256 let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384 let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512 /// Reseed function inline_for_extraction noextract val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a let mk_reseed #a hmac st additional_input additional_input_len = if additional_input_len >. max_additional_input_length then false else let entropy_input_len = min_length a in push_frame(); let entropy_input = B.alloca (u8 0) entropy_input_len in let ok = randombytes entropy_input entropy_input_len in let result = if not ok then false else begin S.hmac_input_bound a; let st_s = !*st in mk_reseed hmac (p st_s) entropy_input_len entropy_input additional_input_len additional_input; true end in pop_frame(); result (** @type: true *) val reseed_sha1 : reseed_st SHA1 (** @type: true *) val reseed_sha2_256: reseed_st SHA2_256 (** @type: true *) val reseed_sha2_384: reseed_st SHA2_384 (** @type: true *) val reseed_sha2_512: reseed_st SHA2_512 let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1 let reseed_sha2_256 = mk_reseed EverCrypt.HMAC.compute_sha2_256 let reseed_sha2_384 = mk_reseed EverCrypt.HMAC.compute_sha2_384 let reseed_sha2_512 = mk_reseed EverCrypt.HMAC.compute_sha2_512 /// Generate function inline_for_extraction noextract val mk_generate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> generate_st a let mk_generate #a hmac output st n additional_input additional_input_len = if additional_input_len >. max_additional_input_length || n >. max_output_length then false else ( push_frame(); let ok = mk_reseed hmac st additional_input additional_input_len in let result = if not ok then false else begin let st_s = !*st in let b = mk_generate hmac output (p st_s) n additional_input_len additional_input in b (* This used to be true, which is fishy *) end in let h1 = get () in pop_frame(); let h2 = get () in frame_invariant (B.loc_all_regions_from false (HS.get_tip h1)) st h1 h2; result ) (** @type: true *) val generate_sha1 : generate_st SHA1 (** @type: true *) val generate_sha2_256: generate_st SHA2_256 (** @type: true *) val generate_sha2_384: generate_st SHA2_384 (** @type: true *) val generate_sha2_512: generate_st SHA2_512 let generate_sha1 = mk_generate EverCrypt.HMAC.compute_sha1 let generate_sha2_256 = mk_generate EverCrypt.HMAC.compute_sha2_256 let generate_sha2_384 = mk_generate EverCrypt.HMAC.compute_sha2_384 let generate_sha2_512 = mk_generate EverCrypt.HMAC.compute_sha2_512 /// Uninstantiate function inline_for_extraction noextract val mk_uninstantiate: a:supported_alg -> uninstantiate_st a let mk_uninstantiate a st = let st_s:state_s a = !*st in let s:Hacl.HMAC_DRBG.state a = p st_s in let k:B.buffer uint8 = s.k in let v:B.buffer uint8 = s.v in let ctr:B.buffer size_t = s.reseed_counter in assert (B.disjoint k v /\ B.disjoint k ctr /\ B.disjoint v ctr); assert (B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s st_s)); Lib.Memzero0.memzero k (hash_len a); Lib.Memzero0.memzero v (hash_len a); ctr.(0ul) <- 0ul; B.free k; B.free v; B.free ctr; B.free st (** @type: true *) val uninstantiate_sha1 : uninstantiate_st SHA1 (** @type: true *) val uninstantiate_sha2_256: uninstantiate_st SHA2_256 (** @type: true *) val uninstantiate_sha2_384: uninstantiate_st SHA2_384 (** @type: true *) val uninstantiate_sha2_512: uninstantiate_st SHA2_512 let uninstantiate_sha1 = mk_uninstantiate SHA1 let uninstantiate_sha2_256 = mk_uninstantiate SHA2_256
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
EverCrypt.DRBG.uninstantiate_st Spec.Hash.Definitions.SHA2_512
Prims.Tot
[ "total" ]
[]
[ "EverCrypt.DRBG.mk_uninstantiate", "Spec.Hash.Definitions.SHA2_512" ]
[]
false
false
false
true
false
let uninstantiate_sha2_512 =
mk_uninstantiate SHA2_512
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.generate_sha2_256
val generate_sha2_256: generate_st SHA2_256
val generate_sha2_256: generate_st SHA2_256
let generate_sha2_256 = mk_generate EverCrypt.HMAC.compute_sha2_256
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 67, "end_line": 241, "start_col": 0, "start_line": 241 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256 let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384 let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512 /// Reseed function inline_for_extraction noextract val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a let mk_reseed #a hmac st additional_input additional_input_len = if additional_input_len >. max_additional_input_length then false else let entropy_input_len = min_length a in push_frame(); let entropy_input = B.alloca (u8 0) entropy_input_len in let ok = randombytes entropy_input entropy_input_len in let result = if not ok then false else begin S.hmac_input_bound a; let st_s = !*st in mk_reseed hmac (p st_s) entropy_input_len entropy_input additional_input_len additional_input; true end in pop_frame(); result (** @type: true *) val reseed_sha1 : reseed_st SHA1 (** @type: true *) val reseed_sha2_256: reseed_st SHA2_256 (** @type: true *) val reseed_sha2_384: reseed_st SHA2_384 (** @type: true *) val reseed_sha2_512: reseed_st SHA2_512 let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1 let reseed_sha2_256 = mk_reseed EverCrypt.HMAC.compute_sha2_256 let reseed_sha2_384 = mk_reseed EverCrypt.HMAC.compute_sha2_384 let reseed_sha2_512 = mk_reseed EverCrypt.HMAC.compute_sha2_512 /// Generate function inline_for_extraction noextract val mk_generate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> generate_st a let mk_generate #a hmac output st n additional_input additional_input_len = if additional_input_len >. max_additional_input_length || n >. max_output_length then false else ( push_frame(); let ok = mk_reseed hmac st additional_input additional_input_len in let result = if not ok then false else begin let st_s = !*st in let b = mk_generate hmac output (p st_s) n additional_input_len additional_input in b (* This used to be true, which is fishy *) end in let h1 = get () in pop_frame(); let h2 = get () in frame_invariant (B.loc_all_regions_from false (HS.get_tip h1)) st h1 h2; result ) (** @type: true *) val generate_sha1 : generate_st SHA1 (** @type: true *) val generate_sha2_256: generate_st SHA2_256 (** @type: true *) val generate_sha2_384: generate_st SHA2_384 (** @type: true *) val generate_sha2_512: generate_st SHA2_512
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
EverCrypt.DRBG.generate_st Spec.Hash.Definitions.SHA2_256
Prims.Tot
[ "total" ]
[]
[ "EverCrypt.DRBG.mk_generate", "Spec.Hash.Definitions.SHA2_256", "EverCrypt.HMAC.compute_sha2_256" ]
[]
false
false
false
true
false
let generate_sha2_256 =
mk_generate EverCrypt.HMAC.compute_sha2_256
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.reseed_sha2_384
val reseed_sha2_384: reseed_st SHA2_384
val reseed_sha2_384: reseed_st SHA2_384
let reseed_sha2_384 = mk_reseed EverCrypt.HMAC.compute_sha2_384
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 194, "start_col": 0, "start_line": 194 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256 let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384 let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512 /// Reseed function inline_for_extraction noextract val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a let mk_reseed #a hmac st additional_input additional_input_len = if additional_input_len >. max_additional_input_length then false else let entropy_input_len = min_length a in push_frame(); let entropy_input = B.alloca (u8 0) entropy_input_len in let ok = randombytes entropy_input entropy_input_len in let result = if not ok then false else begin S.hmac_input_bound a; let st_s = !*st in mk_reseed hmac (p st_s) entropy_input_len entropy_input additional_input_len additional_input; true end in pop_frame(); result (** @type: true *) val reseed_sha1 : reseed_st SHA1 (** @type: true *) val reseed_sha2_256: reseed_st SHA2_256 (** @type: true *) val reseed_sha2_384: reseed_st SHA2_384 (** @type: true *) val reseed_sha2_512: reseed_st SHA2_512 let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
EverCrypt.DRBG.reseed_st Spec.Hash.Definitions.SHA2_384
Prims.Tot
[ "total" ]
[]
[ "EverCrypt.DRBG.mk_reseed", "Spec.Hash.Definitions.SHA2_384", "EverCrypt.HMAC.compute_sha2_384" ]
[]
false
false
false
true
false
let reseed_sha2_384 =
mk_reseed EverCrypt.HMAC.compute_sha2_384
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.uninstantiate
val uninstantiate: a:(Ghost.erased supported_alg) -> uninstantiate_st (Ghost.reveal a)
val uninstantiate: a:(Ghost.erased supported_alg) -> uninstantiate_st (Ghost.reveal a)
let uninstantiate a st = match !* st with | SHA1_s _ -> uninstantiate_sha1 st | SHA2_256_s _ -> uninstantiate_sha2_256 st | SHA2_384_s _ -> uninstantiate_sha2_384 st | SHA2_512_s _ -> uninstantiate_sha2_512 st
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 315, "start_col": 0, "start_line": 310 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256 let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384 let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512 /// Reseed function inline_for_extraction noextract val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a let mk_reseed #a hmac st additional_input additional_input_len = if additional_input_len >. max_additional_input_length then false else let entropy_input_len = min_length a in push_frame(); let entropy_input = B.alloca (u8 0) entropy_input_len in let ok = randombytes entropy_input entropy_input_len in let result = if not ok then false else begin S.hmac_input_bound a; let st_s = !*st in mk_reseed hmac (p st_s) entropy_input_len entropy_input additional_input_len additional_input; true end in pop_frame(); result (** @type: true *) val reseed_sha1 : reseed_st SHA1 (** @type: true *) val reseed_sha2_256: reseed_st SHA2_256 (** @type: true *) val reseed_sha2_384: reseed_st SHA2_384 (** @type: true *) val reseed_sha2_512: reseed_st SHA2_512 let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1 let reseed_sha2_256 = mk_reseed EverCrypt.HMAC.compute_sha2_256 let reseed_sha2_384 = mk_reseed EverCrypt.HMAC.compute_sha2_384 let reseed_sha2_512 = mk_reseed EverCrypt.HMAC.compute_sha2_512 /// Generate function inline_for_extraction noextract val mk_generate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> generate_st a let mk_generate #a hmac output st n additional_input additional_input_len = if additional_input_len >. max_additional_input_length || n >. max_output_length then false else ( push_frame(); let ok = mk_reseed hmac st additional_input additional_input_len in let result = if not ok then false else begin let st_s = !*st in let b = mk_generate hmac output (p st_s) n additional_input_len additional_input in b (* This used to be true, which is fishy *) end in let h1 = get () in pop_frame(); let h2 = get () in frame_invariant (B.loc_all_regions_from false (HS.get_tip h1)) st h1 h2; result ) (** @type: true *) val generate_sha1 : generate_st SHA1 (** @type: true *) val generate_sha2_256: generate_st SHA2_256 (** @type: true *) val generate_sha2_384: generate_st SHA2_384 (** @type: true *) val generate_sha2_512: generate_st SHA2_512 let generate_sha1 = mk_generate EverCrypt.HMAC.compute_sha1 let generate_sha2_256 = mk_generate EverCrypt.HMAC.compute_sha2_256 let generate_sha2_384 = mk_generate EverCrypt.HMAC.compute_sha2_384 let generate_sha2_512 = mk_generate EverCrypt.HMAC.compute_sha2_512 /// Uninstantiate function inline_for_extraction noextract val mk_uninstantiate: a:supported_alg -> uninstantiate_st a let mk_uninstantiate a st = let st_s:state_s a = !*st in let s:Hacl.HMAC_DRBG.state a = p st_s in let k:B.buffer uint8 = s.k in let v:B.buffer uint8 = s.v in let ctr:B.buffer size_t = s.reseed_counter in assert (B.disjoint k v /\ B.disjoint k ctr /\ B.disjoint v ctr); assert (B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s st_s)); Lib.Memzero0.memzero k (hash_len a); Lib.Memzero0.memzero v (hash_len a); ctr.(0ul) <- 0ul; B.free k; B.free v; B.free ctr; B.free st (** @type: true *) val uninstantiate_sha1 : uninstantiate_st SHA1 (** @type: true *) val uninstantiate_sha2_256: uninstantiate_st SHA2_256 (** @type: true *) val uninstantiate_sha2_384: uninstantiate_st SHA2_384 (** @type: true *) val uninstantiate_sha2_512: uninstantiate_st SHA2_512 let uninstantiate_sha1 = mk_uninstantiate SHA1 let uninstantiate_sha2_256 = mk_uninstantiate SHA2_256 let uninstantiate_sha2_384 = mk_uninstantiate SHA2_384 let uninstantiate_sha2_512 = mk_uninstantiate SHA2_512 /// Agile variants that dispatch dynamically to the appropriate monomorphic variants above let instantiate a st personalization_string personalization_string_len = match !*st with | SHA1_s _ -> instantiate_sha1 st personalization_string personalization_string_len | SHA2_256_s _ -> instantiate_sha2_256 st personalization_string personalization_string_len | SHA2_384_s _ -> instantiate_sha2_384 st personalization_string personalization_string_len | SHA2_512_s _ -> instantiate_sha2_512 st personalization_string personalization_string_len let reseed a st additional_input additional_input_len = match !*st with | SHA1_s _ -> reseed_sha1 st additional_input additional_input_len | SHA2_256_s _ -> reseed_sha2_256 st additional_input additional_input_len | SHA2_384_s _ -> reseed_sha2_384 st additional_input additional_input_len | SHA2_512_s _ -> reseed_sha2_512 st additional_input additional_input_len let generate a output st n additional_input additional_input_len = match !*st with | SHA1_s _ -> generate_sha1 output st n additional_input additional_input_len | SHA2_256_s _ -> generate_sha2_256 output st n additional_input additional_input_len | SHA2_384_s _ -> generate_sha2_384 output st n additional_input additional_input_len | SHA2_512_s _ -> generate_sha2_512 output st n additional_input additional_input_len
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Ghost.erased Hacl.HMAC_DRBG.supported_alg -> EverCrypt.DRBG.uninstantiate_st (FStar.Ghost.reveal a)
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "Hacl.HMAC_DRBG.supported_alg", "EverCrypt.DRBG.state", "FStar.Ghost.reveal", "Hacl.HMAC_DRBG.state", "Spec.Hash.Definitions.SHA1", "EverCrypt.DRBG.uninstantiate_sha1", "Prims.unit", "Spec.Hash.Definitions.SHA2_256", "EverCrypt.DRBG.uninstantiate_sha2_256", "Spec.Hash.Definitions.SHA2_384", "EverCrypt.DRBG.uninstantiate_sha2_384", "Spec.Hash.Definitions.SHA2_512", "EverCrypt.DRBG.uninstantiate_sha2_512", "EverCrypt.DRBG.state_s", "Spec.HMAC_DRBG.supported_alg", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let uninstantiate a st =
match !*st with | SHA1_s _ -> uninstantiate_sha1 st | SHA2_256_s _ -> uninstantiate_sha2_256 st | SHA2_384_s _ -> uninstantiate_sha2_384 st | SHA2_512_s _ -> uninstantiate_sha2_512 st
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.mk_uninstantiate
val mk_uninstantiate: a:supported_alg -> uninstantiate_st a
val mk_uninstantiate: a:supported_alg -> uninstantiate_st a
let mk_uninstantiate a st = let st_s:state_s a = !*st in let s:Hacl.HMAC_DRBG.state a = p st_s in let k:B.buffer uint8 = s.k in let v:B.buffer uint8 = s.v in let ctr:B.buffer size_t = s.reseed_counter in assert (B.disjoint k v /\ B.disjoint k ctr /\ B.disjoint v ctr); assert (B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s st_s)); Lib.Memzero0.memzero k (hash_len a); Lib.Memzero0.memzero v (hash_len a); ctr.(0ul) <- 0ul; B.free k; B.free v; B.free ctr; B.free st
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 263, "start_col": 0, "start_line": 249 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul let create a = create_in a HS.root /// Instantiate function inline_for_extraction noextract val mk_instantiate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> instantiate_st a let mk_instantiate #a hmac st personalization_string personalization_string_len = if personalization_string_len >. max_personalization_string_length then false else let entropy_input_len = min_length a in let nonce_len = min_length a /. 2ul in let min_entropy = entropy_input_len +! nonce_len in push_frame(); assert_norm (range (v min_entropy) U32); let entropy = B.alloca (u8 0) min_entropy in let ok = randombytes entropy min_entropy in let result = if not ok then false else begin let entropy_input = B.sub entropy 0ul entropy_input_len in let nonce = B.sub entropy entropy_input_len nonce_len in S.hmac_input_bound a; let st_s = !*st in mk_instantiate hmac (p st_s) entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string; true end in pop_frame(); result (** @type: true *) val instantiate_sha1 : instantiate_st SHA1 (** @type: true *) val instantiate_sha2_256: instantiate_st SHA2_256 (** @type: true *) val instantiate_sha2_384: instantiate_st SHA2_384 (** @type: true *) val instantiate_sha2_512: instantiate_st SHA2_512 let instantiate_sha1 = mk_instantiate EverCrypt.HMAC.compute_sha1 let instantiate_sha2_256 = mk_instantiate EverCrypt.HMAC.compute_sha2_256 let instantiate_sha2_384 = mk_instantiate EverCrypt.HMAC.compute_sha2_384 let instantiate_sha2_512 = mk_instantiate EverCrypt.HMAC.compute_sha2_512 /// Reseed function inline_for_extraction noextract val mk_reseed: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> reseed_st a let mk_reseed #a hmac st additional_input additional_input_len = if additional_input_len >. max_additional_input_length then false else let entropy_input_len = min_length a in push_frame(); let entropy_input = B.alloca (u8 0) entropy_input_len in let ok = randombytes entropy_input entropy_input_len in let result = if not ok then false else begin S.hmac_input_bound a; let st_s = !*st in mk_reseed hmac (p st_s) entropy_input_len entropy_input additional_input_len additional_input; true end in pop_frame(); result (** @type: true *) val reseed_sha1 : reseed_st SHA1 (** @type: true *) val reseed_sha2_256: reseed_st SHA2_256 (** @type: true *) val reseed_sha2_384: reseed_st SHA2_384 (** @type: true *) val reseed_sha2_512: reseed_st SHA2_512 let reseed_sha1 = mk_reseed EverCrypt.HMAC.compute_sha1 let reseed_sha2_256 = mk_reseed EverCrypt.HMAC.compute_sha2_256 let reseed_sha2_384 = mk_reseed EverCrypt.HMAC.compute_sha2_384 let reseed_sha2_512 = mk_reseed EverCrypt.HMAC.compute_sha2_512 /// Generate function inline_for_extraction noextract val mk_generate: #a:supported_alg -> EverCrypt.HMAC.compute_st a -> generate_st a let mk_generate #a hmac output st n additional_input additional_input_len = if additional_input_len >. max_additional_input_length || n >. max_output_length then false else ( push_frame(); let ok = mk_reseed hmac st additional_input additional_input_len in let result = if not ok then false else begin let st_s = !*st in let b = mk_generate hmac output (p st_s) n additional_input_len additional_input in b (* This used to be true, which is fishy *) end in let h1 = get () in pop_frame(); let h2 = get () in frame_invariant (B.loc_all_regions_from false (HS.get_tip h1)) st h1 h2; result ) (** @type: true *) val generate_sha1 : generate_st SHA1 (** @type: true *) val generate_sha2_256: generate_st SHA2_256 (** @type: true *) val generate_sha2_384: generate_st SHA2_384 (** @type: true *) val generate_sha2_512: generate_st SHA2_512 let generate_sha1 = mk_generate EverCrypt.HMAC.compute_sha1 let generate_sha2_256 = mk_generate EverCrypt.HMAC.compute_sha2_256 let generate_sha2_384 = mk_generate EverCrypt.HMAC.compute_sha2_384 let generate_sha2_512 = mk_generate EverCrypt.HMAC.compute_sha2_512 /// Uninstantiate function inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.HMAC_DRBG.supported_alg -> EverCrypt.DRBG.uninstantiate_st a
Prims.Tot
[ "total" ]
[]
[ "Hacl.HMAC_DRBG.supported_alg", "EverCrypt.DRBG.state", "LowStar.Monotonic.Buffer.free", "EverCrypt.DRBG.state_s", "LowStar.Buffer.trivial_preorder", "Prims.unit", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "LowStar.BufferOps.op_Array_Assignment", "FStar.UInt32.__uint_to_t", "Lib.Memzero0.memzero", "Hacl.HMAC_DRBG.hash_len", "Prims._assert", "LowStar.Monotonic.Buffer.loc_disjoint", "LowStar.Monotonic.Buffer.loc_addr_of_buffer", "EverCrypt.DRBG.footprint_s", "Prims.l_and", "LowStar.Monotonic.Buffer.disjoint", "LowStar.Buffer.buffer", "Hacl.HMAC_DRBG.__proj__State__item__reseed_counter", "Hacl.HMAC_DRBG.__proj__State__item__v", "Hacl.HMAC_DRBG.__proj__State__item__k", "Hacl.HMAC_DRBG.state", "EverCrypt.DRBG.p", "LowStar.BufferOps.op_Bang_Star" ]
[]
false
false
false
false
false
let mk_uninstantiate a st =
let st_s:state_s a = !*st in let s:Hacl.HMAC_DRBG.state a = p st_s in let k:B.buffer uint8 = s.k in let v:B.buffer uint8 = s.v in let ctr:B.buffer size_t = s.reseed_counter in assert (B.disjoint k v /\ B.disjoint k ctr /\ B.disjoint v ctr); assert (B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s st_s)); Lib.Memzero0.memzero k (hash_len a); Lib.Memzero0.memzero v (hash_len a); ctr.(0ul) <- 0ul; B.free k; B.free v; B.free ctr; B.free st
false
Steel.ST.GenElim1.fst
Steel.ST.GenElim1.compute_gen_elim_nondep_correct10
val compute_gen_elim_nondep_correct10 (i0: gen_elim_i) (t1 t2 t3 t4 t5 t6 t7 t8 t9 t10: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5; t6; t7; t8; t9; t10])
val compute_gen_elim_nondep_correct10 (i0: gen_elim_i) (t1 t2 t3 t4 t5 t6 t7 t8 t9 t10: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5; t6; t7; t8; t9; t10])
let compute_gen_elim_nondep_correct10 (i0: gen_elim_i) (t1 t2 t3 t4 t5 t6 t7 t8 t9 t10: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5; t6; t7; t8; t9; t10]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> exists_ (fun x3 -> exists_ (fun x4 -> exists_ (fun x5 -> exists_ (fun x6 -> exists_ (fun x7 -> exists_ (fun x8 -> exists_ (fun x9 -> exists_ (fun x10 -> q x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 (U.raise_val ()) `star` pure (post x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 (U.raise_val ()))))))))))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let x3 = elim_exists' () in let x4 = elim_exists' () in let x5 = elim_exists' () in let x6 = elim_exists' () in let x7 = elim_exists' () in let x8 = elim_exists' () in let x9 = elim_exists' () in let x10 = elim_exists' () in let res = Mktuple10 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 in elim_pure _; rewrite_with_trefl (q _ _ _ _ _ _ _ _ _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res
{ "file_name": "lib/steel/Steel.ST.GenElim1.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 7, "end_line": 659, "start_col": 0, "start_line": 639 }
module Steel.ST.GenElim1 let gen_elim_f (p: vprop) (a: Type) (q: (a -> vprop)) (post: (a -> prop)) : Tot Type = ((opened: inames) -> STGhost a opened p q True post) module U = FStar.Universe let gen_unit_elim_t (i: gen_unit_elim_i) : Tot Type = gen_elim_f (compute_gen_unit_elim_p i) (U.raise_t u#_ u#1 unit) (fun _ -> compute_gen_unit_elim_q i) (fun _ -> compute_gen_unit_elim_post i) let compute_gen_unit_elim_f_id (v: vprop) : Tot (gen_unit_elim_t (GUEId v)) = fun _ -> noop (); U.raise_val () let compute_gen_unit_elim_f_pure (p: prop) : Tot (gen_unit_elim_t (GUEPure p)) = fun _ -> rewrite (compute_gen_unit_elim_p (GUEPure p)) (pure p); elim_pure p; U.raise_val () let compute_gen_unit_elim_f_star (i1 i2: gen_unit_elim_i) (f1: gen_unit_elim_t i1) (f2: gen_unit_elim_t i2) : Tot (gen_unit_elim_t (GUEStar i1 i2)) = fun _ -> rewrite (compute_gen_unit_elim_p (GUEStar i1 i2)) (compute_gen_unit_elim_p i1 `star` compute_gen_unit_elim_p i2); let _ = f1 _ in let _ = f2 _ in rewrite (compute_gen_unit_elim_q i1 `star` compute_gen_unit_elim_q i2) (compute_gen_unit_elim_q (GUEStar i1 i2)); U.raise_val () let rec compute_gen_unit_elim_f (i: gen_unit_elim_i) : GTot (gen_unit_elim_t i) = match i returns (gen_unit_elim_t i) with | GUEId v -> compute_gen_unit_elim_f_id v | GUEPure p -> compute_gen_unit_elim_f_pure p | GUEStar i1 i2 -> compute_gen_unit_elim_f_star i1 i2 (compute_gen_unit_elim_f i1) (compute_gen_unit_elim_f i2) let gen_elim_t (i: gen_elim_i) : Tot Type = gen_elim_f (compute_gen_elim_p i) (compute_gen_elim_a i) (compute_gen_elim_q i) (compute_gen_elim_post i) let compute_gen_elim_f_unit (i: gen_unit_elim_i) : GTot (gen_elim_t (GEUnit i)) = compute_gen_unit_elim_f i let compute_gen_elim_f_star_l (i1: gen_elim_i) (f1: gen_elim_t i1) (i2: gen_unit_elim_i) : GTot (gen_elim_t (GEStarL i1 i2)) = let f2 = compute_gen_unit_elim_f i2 in fun _ -> rewrite (compute_gen_elim_p (GEStarL i1 i2)) (compute_gen_elim_p i1 `star` compute_gen_unit_elim_p i2); let res = f1 _ in let _ = f2 _ in let res' : compute_gen_elim_a (GEStarL i1 i2) = coerce_with_trefl res in rewrite (compute_gen_elim_q i1 res `star` compute_gen_unit_elim_q i2) (compute_gen_elim_q (GEStarL i1 i2) res'); res' let compute_gen_elim_f_star_r (i1: gen_unit_elim_i) (i2: gen_elim_i) (f2: gen_elim_t i2) : GTot (gen_elim_t (GEStarR i1 i2)) = let f1 = compute_gen_unit_elim_f i1 in fun _ -> rewrite (compute_gen_elim_p (GEStarR i1 i2)) (compute_gen_unit_elim_p i1 `star` compute_gen_elim_p i2); let _ = f1 _ in let res = f2 _ in let res' : compute_gen_elim_a (GEStarR i1 i2) = coerce_with_trefl res in rewrite (compute_gen_unit_elim_q i1 `star` compute_gen_elim_q i2 res) (compute_gen_elim_q (GEStarR i1 i2) res'); res' let compute_gen_elim_f_star (i1: gen_elim_i) (f1: gen_elim_t i1) (i2: gen_elim_i) (f2: gen_elim_t i2) : GTot (gen_elim_t (GEStar i1 i2)) = fun _ -> rewrite (compute_gen_elim_p (GEStar i1 i2)) (compute_gen_elim_p i1 `star` compute_gen_elim_p i2); let res1 = f1 _ in let res2 = f2 _ in let res : compute_gen_elim_a (GEStar i1 i2) = coerce_with_trefl (res1, res2) in rewrite (compute_gen_elim_q i1 res1 `star` compute_gen_elim_q i2 res2) (compute_gen_elim_q (GEStar i1 i2) res); res let compute_gen_elim_f_exists_no_abs0 (a: Type0) (body: (a -> vprop)) : GTot (gen_elim_t (GEExistsNoAbs0 body)) = fun _ -> rewrite (compute_gen_elim_p (GEExistsNoAbs0 body)) (exists_ body); let gres = elim_exists () in let res : compute_gen_elim_a (GEExistsNoAbs0 body) = U.raise_val (Ghost.reveal gres) in // coerce_with_trefl (Ghost.reveal gres) in rewrite (body gres) (compute_gen_elim_q (GEExistsNoAbs0 body) res); res let rewrite_with_trefl (#opened:_) (p q:vprop) : STGhost unit opened p (fun _ -> q) (requires T.with_tactic T.trefl (p == q)) (ensures fun _ -> True) = rewrite p q let compute_gen_elim_f_exists_unit0 (a: Type0) (body: a -> gen_unit_elim_i) : Tot (gen_elim_t (GEExistsUnit0 body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p (GEExistsUnit0 body)) (exists_ (fun x -> compute_gen_unit_elim_p (body x))); let gres = elim_exists () in let _ = compute_gen_unit_elim_f (body gres) _ in let res : compute_gen_elim_a (GEExistsUnit0 body) = U.raise_val (Ghost.reveal gres) in // coerce_with_trefl (Ghost.reveal gres) in rewrite (compute_gen_unit_elim_q (body gres)) (compute_gen_elim_q (GEExistsUnit0 body) res); res let compute_gen_elim_f_exists0 (a: Type0) (body: a -> gen_elim_i) (f: (x: a) -> GTot (gen_elim_t (body x))) : Tot (gen_elim_t (GEExists0 body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p (GEExists0 body)) (exists_ (fun x -> compute_gen_elim_p (body x))); let gres1 = elim_exists () in let gres2 = f gres1 _ in let res : compute_gen_elim_a (GEExists0 body) = coerce_with_trefl (Mkdtuple2 #a #(fun x -> compute_gen_elim_a (body x)) (Ghost.reveal gres1) (Ghost.reveal gres2)) in rewrite (compute_gen_elim_q (body gres1) gres2) (compute_gen_elim_q (GEExists0 body) res); res let compute_gen_elim_f_exists_no_abs1 (a: Type) (body: (a -> vprop)) : GTot (gen_elim_t (GEExistsNoAbs1 body)) = fun _ -> rewrite (compute_gen_elim_p (GEExistsNoAbs1 body)) (exists_ body); let gres = elim_exists () in let res : compute_gen_elim_a (GEExistsNoAbs1 body) = coerce_with_trefl (Ghost.reveal gres) in rewrite (body gres) (compute_gen_elim_q (GEExistsNoAbs1 body) res); res let compute_gen_elim_f_exists_unit1 (a: Type) (body: a -> gen_unit_elim_i) : Tot (gen_elim_t (GEExistsUnit1 body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p (GEExistsUnit1 body)) (exists_ (fun x -> compute_gen_unit_elim_p (body x))); let gres = elim_exists () in let _ = compute_gen_unit_elim_f (body gres) _ in let res : compute_gen_elim_a (GEExistsUnit1 body) = coerce_with_trefl (Ghost.reveal gres) in rewrite (compute_gen_unit_elim_q (body gres)) (compute_gen_elim_q (GEExistsUnit1 body) res); res let compute_gen_elim_f_exists1 (a: Type) (body: a -> gen_elim_i) (f: (x: a) -> GTot (gen_elim_t (body x))) : Tot (gen_elim_t (GEExists1 body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p (GEExists1 body)) (exists_ (fun x -> compute_gen_elim_p (body x))); let gres1 = elim_exists () in let gres2 = f gres1 _ in let res : compute_gen_elim_a (GEExists1 body) = coerce_with_trefl (Mkdtuple2 #a #(fun x -> compute_gen_elim_a (body x)) (Ghost.reveal gres1) (Ghost.reveal gres2)) in rewrite (compute_gen_elim_q (body gres1) gres2) (compute_gen_elim_q (GEExists1 body) res); res let rec compute_gen_elim_f (i: gen_elim_i) : GTot (gen_elim_t i) = match i returns (gen_elim_t i) with | GEUnit i -> compute_gen_elim_f_unit i | GEStarL i1 i2 -> compute_gen_elim_f_star_l i1 (compute_gen_elim_f i1) i2 | GEStarR i1 i2 -> compute_gen_elim_f_star_r i1 i2 (compute_gen_elim_f i2) | GEStar i1 i2 -> compute_gen_elim_f_star i1 (compute_gen_elim_f i1) i2 (compute_gen_elim_f i2) | GEExistsNoAbs0 body -> compute_gen_elim_f_exists_no_abs0 _ body | GEExistsUnit0 body -> compute_gen_elim_f_exists_unit0 _ body | GEExists0 body -> compute_gen_elim_f_exists0 _ body (fun x -> compute_gen_elim_f (body x)) | GEExistsNoAbs1 body -> compute_gen_elim_f_exists_no_abs1 _ body | GEExistsUnit1 body -> compute_gen_elim_f_exists_unit1 _ body | GEExists1 body -> compute_gen_elim_f_exists1 _ body (fun x -> compute_gen_elim_f (body x)) let rec tele_p (x: gen_elim_tele) : Tot vprop = match x with | TRet v p -> v `star` pure p | TExists ty body -> exists_ (fun x -> tele_p (body x)) let elim_exists' (#a:Type) (#opened_invariants:_) (#p:a -> vprop) (_:unit) : STGhostT (a) opened_invariants (exists_ p) (fun x -> p x) = let gx = elim_exists () in let x = Ghost.reveal gx in rewrite (p gx) (p x); x let vprop_rewrite (from to: vprop) : Tot Type = gen_elim_f from unit (fun _ -> to) (fun _ -> True) let tele_star_vprop_correct_ret (v': vprop) (p': prop) (v: vprop) (p: prop) : Tot (vprop_rewrite (tele_p (TRet v' p') `star` v `star` pure p) (tele_p (tele_star_vprop (TRet v' p') v p))) = fun _ -> elim_pure p; rewrite (tele_p _) (v' `star` pure p'); elim_pure p'; intro_pure (p /\ p'); rewrite ((v `star` v') `star` pure (p /\ p')) (tele_p _) let tele_star_vprop_correct_exists (v: vprop) (p: prop) (ty: _) (body: ty -> gen_elim_tele) (ih: (x: ty) -> GTot (vprop_rewrite (tele_p (body x) `star` v `star` pure p) (tele_p (tele_star_vprop (body x) v p)))) : Tot (vprop_rewrite (tele_p (TExists ty body) `star` v `star` pure p) (tele_p (tele_star_vprop (TExists ty body) v p))) = fun _ -> rewrite_with_trefl (tele_p _) (exists_ (fun x -> tele_p (body x))); let x = elim_exists' () in ih x _; intro_exists x (fun x -> tele_p (tele_star_vprop (body x) v p)); rewrite_with_trefl (exists_ (fun x -> tele_p (tele_star_vprop (body x) v p))) (tele_p _) let rec tele_star_vprop_correct (i: gen_elim_tele) (v: vprop) (p: prop) : GTot (vprop_rewrite (tele_p i `star` v `star` pure p) (tele_p (tele_star_vprop i v p)) ) = match i returns vprop_rewrite (tele_p i `star` v `star` pure p) (tele_p (tele_star_vprop i v p)) with | TRet v' p' -> tele_star_vprop_correct_ret v' p' v p | TExists ty body -> tele_star_vprop_correct_exists v p ty body (fun x -> tele_star_vprop_correct (body x) v p) let tele_star_correct_ret_l (v1: vprop) (p1: prop) (i2: gen_elim_tele) : Tot (vprop_rewrite (tele_p (TRet v1 p1) `star` tele_p i2) (tele_p (TRet v1 p1 `tele_star` i2))) = fun _ -> rewrite (tele_p (TRet v1 p1)) (v1 `star` pure p1); tele_star_vprop_correct i2 v1 p1 _; rewrite (tele_p _) (tele_p _) let tele_star_correct_ret_r (i1: gen_elim_tele { ~ (TRet? i1) }) (v2: vprop) (p2: prop) : Tot (vprop_rewrite (tele_p i1 `star` tele_p (TRet v2 p2)) (tele_p (i1 `tele_star` TRet v2 p2))) = fun _ -> rewrite (tele_p (TRet v2 p2)) (v2 `star` pure p2); tele_star_vprop_correct i1 v2 p2 _; rewrite (tele_p _) (tele_p (i1 `tele_star` TRet v2 p2)) let tele_star_correct_exists (ty1: _) (f1: ty1 -> gen_elim_tele) (ty2: _) (f2: ty2 -> gen_elim_tele) (ih: (x1: ty1) -> (x2: ty2) -> GTot (vprop_rewrite (tele_p (f1 x1) `star` tele_p (f2 x2)) (tele_p (f1 x1 `tele_star` f2 x2)))) : Tot (vprop_rewrite (tele_p (TExists ty1 f1) `star` tele_p (TExists ty2 f2)) (tele_p (tele_star (TExists ty1 f1) (TExists ty2 f2)))) = fun _ -> rewrite_with_trefl (tele_p (TExists ty1 f1)) (exists_ (fun x1 -> tele_p (f1 x1))); let x1 = elim_exists' () in rewrite_with_trefl (tele_p (TExists ty2 f2)) (exists_ (fun x2 -> tele_p (f2 x2))); let x2 = elim_exists' () in ih x1 x2 _; intro_exists x2 (fun x2 -> tele_p (tele_star (f1 x1) (f2 x2))); intro_exists x1 (fun x1 -> exists_ (fun x2 -> tele_p (tele_star (f1 x1) (f2 x2)))); rewrite_with_trefl (exists_ _) (tele_p _) let rec tele_star_correct (i1 i2: gen_elim_tele) : GTot (vprop_rewrite (tele_p i1 `star` tele_p i2) (tele_p (i1 `tele_star` i2))) = match i1 returns vprop_rewrite (tele_p i1 `star` tele_p i2) (tele_p (i1 `tele_star` i2)) with | TRet v1 p1 -> tele_star_correct_ret_l v1 p1 i2 | TExists ty1 f1 -> begin match i2 returns vprop_rewrite (tele_p (TExists ty1 f1) `star` tele_p i2) (tele_p (TExists ty1 f1 `tele_star` i2)) with | TRet v2 p2 -> tele_star_correct_ret_r (TExists ty1 f1) v2 p2 | TExists ty2 f2 -> tele_star_correct_exists ty1 f1 ty2 f2 (fun x1 x2 -> tele_star_correct (f1 x1) (f2 x2)) end [@@noextract_to "Plugin" ] let ge_to_tele_t (i: gen_elim_i) : Tot Type = vprop_rewrite (compute_gen_elim_p i) (tele_p (compute_gen_elim_tele i)) let compute_gen_elim_tele_correct_unit (v: gen_unit_elim_i) : Tot (ge_to_tele_t (GEUnit v)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (compute_gen_unit_elim_p v); let _ = compute_gen_unit_elim_f v _ in intro_pure (compute_gen_unit_elim_post v); rewrite_with_trefl (compute_gen_unit_elim_q v `star` pure _) (tele_p _) let compute_gen_elim_tele_correct_star_l (l: gen_elim_i) (ihl: ge_to_tele_t l) (ru: gen_unit_elim_i) : Tot (ge_to_tele_t (GEStarL l ru)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (compute_gen_elim_p l `star` compute_gen_unit_elim_p ru); ihl _; let _ = compute_gen_unit_elim_f ru _ in intro_pure (compute_gen_unit_elim_post ru); tele_star_vprop_correct _ _ _ _; rewrite_with_trefl (tele_p _) (tele_p _) let compute_gen_elim_tele_correct_star_r (lu: gen_unit_elim_i) (r: gen_elim_i) (ihr: ge_to_tele_t r) : Tot (ge_to_tele_t (GEStarR lu r)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (compute_gen_unit_elim_p lu `star` compute_gen_elim_p r); ihr _; let _ = compute_gen_unit_elim_f lu _ in intro_pure (compute_gen_unit_elim_post lu); tele_star_vprop_correct _ _ _ _; rewrite_with_trefl (tele_p _) (tele_p _) let compute_gen_elim_tele_correct_star (l: gen_elim_i) (ihl: ge_to_tele_t l) (r: gen_elim_i) (ihr: ge_to_tele_t r) : Tot (ge_to_tele_t (GEStar l r)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (compute_gen_elim_p l `star` compute_gen_elim_p r); ihl _; ihr _; tele_star_correct (compute_gen_elim_tele l) (compute_gen_elim_tele r) _; rewrite_with_trefl (tele_p _) (tele_p _) let compute_gen_elim_tele_correct_exists_no_abs0 (ty: _) (body: ty -> vprop) : Tot (ge_to_tele_t (GEExistsNoAbs0 #ty body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (exists_ body); let x = elim_exists' () in intro_pure True; rewrite (body x) (body (U.downgrade_val (U.raise_val x))); intro_exists (U.raise_val u#0 u#1 x) (fun x -> body (U.downgrade_val x) `star` pure True); rewrite_with_trefl (exists_ _) (tele_p _) let compute_gen_elim_tele_correct_exists_unit0 (ty: _) (body: ty -> gen_unit_elim_i) : Tot (ge_to_tele_t (GEExistsUnit0 #ty body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (exists_ (fun x -> compute_gen_unit_elim_p (body x))); let x = elim_exists' () in let _ = compute_gen_unit_elim_f (body x) _ in intro_pure (compute_gen_unit_elim_post (body (U.downgrade_val (U.raise_val u#0 u#1 x)))); rewrite (compute_gen_unit_elim_q (body x)) (compute_gen_unit_elim_q (body (U.downgrade_val (U.raise_val x)))); intro_exists (U.raise_val u#0 u#1 x) (fun x -> compute_gen_unit_elim_q (body (U.downgrade_val x)) `star` pure (compute_gen_unit_elim_post (body (U.downgrade_val x)))); rewrite_with_trefl (exists_ _) (tele_p _) let compute_gen_elim_tele_correct_exists0 (ty: _) (body: ty -> gen_elim_i) (ih: (x: ty) -> GTot (ge_to_tele_t (body x))) : Tot (ge_to_tele_t (GEExists0 #ty body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (exists_ (fun x -> compute_gen_elim_p (body x))); let x = elim_exists' () in ih x _; rewrite (tele_p (compute_gen_elim_tele (body x))) (tele_p (compute_gen_elim_tele (body (U.downgrade_val (U.raise_val u#0 u#1 x))))); intro_exists (U.raise_val u#0 u#1 x) (fun x -> tele_p (compute_gen_elim_tele (body (U.downgrade_val u#0 u#1 x)))); rewrite_with_trefl (exists_ _) (tele_p _) let compute_gen_elim_tele_correct_exists_no_abs1 (ty: _) (body: ty -> vprop) : Tot (ge_to_tele_t (GEExistsNoAbs1 #ty body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (exists_ body); let x = elim_exists' () in intro_pure True; intro_exists x (fun x -> body x `star` pure True); rewrite_with_trefl (exists_ _) (tele_p _) let compute_gen_elim_tele_correct_exists_unit1 (ty: _) (body: ty -> gen_unit_elim_i) : Tot (ge_to_tele_t (GEExistsUnit1 #ty body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (exists_ (fun x -> compute_gen_unit_elim_p (body x))); let x = elim_exists' () in let _ = compute_gen_unit_elim_f (body x) _ in intro_pure (compute_gen_unit_elim_post (body x)); intro_exists x (fun x -> compute_gen_unit_elim_q (body x) `star` pure (compute_gen_unit_elim_post (body x))); rewrite_with_trefl (exists_ _) (tele_p _) let compute_gen_elim_tele_correct_exists1 (ty: _) (body: ty -> gen_elim_i) (ih: (x: ty) -> GTot (ge_to_tele_t (body x))) : Tot (ge_to_tele_t (GEExists1 #ty body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (exists_ (fun x -> compute_gen_elim_p (body x))); let x = elim_exists' () in ih x _; intro_exists x (fun x -> tele_p (compute_gen_elim_tele (body x))); rewrite_with_trefl (exists_ _) (tele_p _) let rec compute_gen_elim_tele_correct (x: gen_elim_i) : GTot (ge_to_tele_t x) = match x returns ge_to_tele_t x with | GEUnit v -> compute_gen_elim_tele_correct_unit v | GEStarL l ru -> compute_gen_elim_tele_correct_star_l l (compute_gen_elim_tele_correct l) ru | GEStarR lu r -> compute_gen_elim_tele_correct_star_r lu r (compute_gen_elim_tele_correct r) | GEStar l r -> compute_gen_elim_tele_correct_star l (compute_gen_elim_tele_correct l) r (compute_gen_elim_tele_correct r) | GEExistsNoAbs0 #ty body -> compute_gen_elim_tele_correct_exists_no_abs0 ty body | GEExistsUnit0 #ty body -> compute_gen_elim_tele_correct_exists_unit0 ty body | GEExists0 #ty body -> compute_gen_elim_tele_correct_exists0 ty body (fun x -> compute_gen_elim_tele_correct (body x)) | GEExistsNoAbs1 #ty body -> compute_gen_elim_tele_correct_exists_no_abs1 ty body | GEExistsUnit1 #ty body -> compute_gen_elim_tele_correct_exists_unit1 ty body | GEExists1 #ty body -> compute_gen_elim_tele_correct_exists1 ty body (fun x -> compute_gen_elim_tele_correct (body x)) let rec gen_elim_nondep_p (ty: list (Type u#a)) : Tot (curried_function_type ty (U.raise_t u#_ u#(max 2 a) unit -> vprop) -> curried_function_type ty (U.raise_t u#_ u#(max 2 a) unit -> prop) -> Tot vprop) = match ty as ty' returns curried_function_type ty' (U.raise_t u#_ u#(max 2 a) unit -> vprop) -> curried_function_type ty' (U.raise_t u#_ u#(max 2 a) unit -> prop) -> Tot vprop with | [] -> fun q post -> q (U.raise_val ()) `star` pure (post (U.raise_val ())) | t :: tq -> fun q post -> exists_ (fun x -> gen_elim_nondep_p tq (q x) (post x)) let rec gen_elim_nondep_sem_correct (ty: list (Type u#a)) : Tot ((q: curried_function_type ty _) -> (post: curried_function_type ty _) -> Lemma (tele_p (gen_elim_nondep_sem ty q post) `equiv` gen_elim_nondep_p ty q post) ) = match ty returns ((q: curried_function_type ty _) -> (post: curried_function_type ty _) -> Lemma (tele_p (gen_elim_nondep_sem ty q post) `equiv` gen_elim_nondep_p ty q post) ) with | [] -> fun q post -> equiv_refl (q (U.raise_val ()) `star` pure (post (U.raise_val ()))) | ta :: tq -> fun q post -> let phi (x: ta) : Lemma (tele_p (gen_elim_nondep_sem tq (q x) (post x)) `equiv` gen_elim_nondep_p tq (q x) (post x)) = gen_elim_nondep_sem_correct tq (q x) (post x) in Classical.forall_intro phi; let prf () : Lemma (exists_ (fun x -> tele_p (gen_elim_nondep_sem tq (q x) (post x))) `equiv` exists_ (fun x -> gen_elim_nondep_p tq (q x) (post x))) = exists_equiv (fun x -> tele_p (gen_elim_nondep_sem tq (q x) (post x))) (fun x -> gen_elim_nondep_p tq (q x) (post x)) in assert_norm (tele_p (gen_elim_nondep_sem (ta :: tq) q post) == exists_ (fun x -> tele_p (gen_elim_nondep_sem tq (q x) (post x)))); assert_norm (gen_elim_nondep_p (ta :: tq) q post == exists_ (fun x -> gen_elim_nondep_p tq (q x) (post x))); prf () let compute_gen_elim_nondep_correct_t (i0: gen_elim_i) (ty: list (Type u#1)) : Tot Type = (q: _) -> (post: _) -> (intro: vprop_rewrite (compute_gen_elim_p i0) (gen_elim_nondep_p ty q post)) -> GTot (gen_elim_f (compute_gen_elim_p i0) (compute_gen_elim_nondep_a' ty) (fun x -> compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) ty q x (U.raise_val ())) (fun x -> compute_uncurry _ (fun _ -> True) ty post x (U.raise_val ())) ) let compute_gen_elim_nondep_correct0 (i0: gen_elim_i) : Tot (compute_gen_elim_nondep_correct_t i0 []) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (q (U.raise_val ()) `star` pure (post (U.raise_val ()))); let res = U.raise_val () in elim_pure _; rewrite_with_trefl (q (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res let compute_gen_elim_nondep_correct1 (i0: gen_elim_i) (t1: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> q x1 (U.raise_val ()) `star` pure (post x1 (U.raise_val ())))); let res = elim_exists' () in elim_pure _; rewrite_with_trefl (q _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res let compute_gen_elim_nondep_correct2 (i0: gen_elim_i) (t1 t2: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> q x1 x2 (U.raise_val ()) `star` pure (post x1 x2 (U.raise_val ()))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let res = Mktuple2 x1 x2 in elim_pure _; rewrite_with_trefl (q _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res let compute_gen_elim_nondep_correct3 (i0: gen_elim_i) (t1 t2 t3: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> exists_ (fun x3 -> q x1 x2 x3 (U.raise_val ()) `star` pure (post x1 x2 x3 (U.raise_val ())))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let x3 = elim_exists' () in let res = Mktuple3 x1 x2 x3 in elim_pure _; rewrite_with_trefl (q _ _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res let compute_gen_elim_nondep_correct4 (i0: gen_elim_i) (t1 t2 t3 t4: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> exists_ (fun x3 -> exists_ (fun x4 -> q x1 x2 x3 x4 (U.raise_val ()) `star` pure (post x1 x2 x3 x4 (U.raise_val ()))))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let x3 = elim_exists' () in let x4 = elim_exists' () in let res = Mktuple4 x1 x2 x3 x4 in elim_pure _; rewrite_with_trefl (q _ _ _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res let compute_gen_elim_nondep_correct5 (i0: gen_elim_i) (t1 t2 t3 t4 t5: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> exists_ (fun x3 -> exists_ (fun x4 -> exists_ (fun x5 -> q x1 x2 x3 x4 x5 (U.raise_val ()) `star` pure (post x1 x2 x3 x4 x5 (U.raise_val ())))))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let x3 = elim_exists' () in let x4 = elim_exists' () in let x5 = elim_exists' () in let res = Mktuple5 x1 x2 x3 x4 x5 in elim_pure _; rewrite_with_trefl (q _ _ _ _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res let compute_gen_elim_nondep_correct6 (i0: gen_elim_i) (t1 t2 t3 t4 t5 t6: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5; t6]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> exists_ (fun x3 -> exists_ (fun x4 -> exists_ (fun x5 -> exists_ (fun x6 -> q x1 x2 x3 x4 x5 x6 (U.raise_val ()) `star` pure (post x1 x2 x3 x4 x5 x6 (U.raise_val ()))))))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let x3 = elim_exists' () in let x4 = elim_exists' () in let x5 = elim_exists' () in let x6 = elim_exists' () in let res = Mktuple6 x1 x2 x3 x4 x5 x6 in elim_pure _; rewrite_with_trefl (q _ _ _ _ _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res let compute_gen_elim_nondep_correct7 (i0: gen_elim_i) (t1 t2 t3 t4 t5 t6 t7: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5; t6; t7]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> exists_ (fun x3 -> exists_ (fun x4 -> exists_ (fun x5 -> exists_ (fun x6 -> exists_ (fun x7 -> q x1 x2 x3 x4 x5 x6 x7 (U.raise_val ()) `star` pure (post x1 x2 x3 x4 x5 x6 x7 (U.raise_val ())))))))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let x3 = elim_exists' () in let x4 = elim_exists' () in let x5 = elim_exists' () in let x6 = elim_exists' () in let x7 = elim_exists' () in let res = Mktuple7 x1 x2 x3 x4 x5 x6 x7 in elim_pure _; rewrite_with_trefl (q _ _ _ _ _ _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res let compute_gen_elim_nondep_correct8 (i0: gen_elim_i) (t1 t2 t3 t4 t5 t6 t7 t8: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5; t6; t7; t8]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> exists_ (fun x3 -> exists_ (fun x4 -> exists_ (fun x5 -> exists_ (fun x6 -> exists_ (fun x7 -> exists_ (fun x8 -> q x1 x2 x3 x4 x5 x6 x7 x8 (U.raise_val ()) `star` pure (post x1 x2 x3 x4 x5 x6 x7 x8 (U.raise_val ()))))))))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let x3 = elim_exists' () in let x4 = elim_exists' () in let x5 = elim_exists' () in let x6 = elim_exists' () in let x7 = elim_exists' () in let x8 = elim_exists' () in let res = Mktuple8 x1 x2 x3 x4 x5 x6 x7 x8 in elim_pure _; rewrite_with_trefl (q _ _ _ _ _ _ _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res let compute_gen_elim_nondep_correct9 (i0: gen_elim_i) (t1 t2 t3 t4 t5 t6 t7 t8 t9: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5; t6; t7; t8; t9]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> exists_ (fun x3 -> exists_ (fun x4 -> exists_ (fun x5 -> exists_ (fun x6 -> exists_ (fun x7 -> exists_ (fun x8 -> exists_ (fun x9 -> q x1 x2 x3 x4 x5 x6 x7 x8 x9 (U.raise_val ()) `star` pure (post x1 x2 x3 x4 x5 x6 x7 x8 x9 (U.raise_val ())))))))))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let x3 = elim_exists' () in let x4 = elim_exists' () in let x5 = elim_exists' () in let x6 = elim_exists' () in let x7 = elim_exists' () in let x8 = elim_exists' () in let x9 = elim_exists' () in let res = Mktuple9 x1 x2 x3 x4 x5 x6 x7 x8 x9 in elim_pure _; rewrite_with_trefl (q _ _ _ _ _ _ _ _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.GenElim1.fst" }
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.ST.GenElim1.Base", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i0: Steel.ST.GenElim1.Base.gen_elim_i -> t1: Type -> t2: Type -> t3: Type -> t4: Type -> t5: Type -> t6: Type -> t7: Type -> t8: Type -> t9: Type -> t10: Type -> Steel.ST.GenElim1.compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5; t6; t7; t8; t9; t10]
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.GenElim1.Base.gen_elim_i", "Steel.ST.GenElim1.Base.curried_function_type", "Prims.Cons", "Prims.Nil", "FStar.Universe.raise_t", "Prims.unit", "Steel.Effect.Common.vprop", "Prims.prop", "Steel.ST.GenElim1.vprop_rewrite", "Steel.ST.GenElim1.Base.compute_gen_elim_p", "Steel.ST.GenElim1.gen_elim_nondep_p", "Steel.Memory.inames", "Steel.ST.GenElim1.Base.compute_gen_elim_nondep_a'", "Steel.ST.GenElim1.rewrite_with_trefl", "FStar.Universe.raise_val", "Steel.ST.GenElim1.Base.compute_uncurry", "Steel.ST.GenElim1.Base.compute_gen_elim_p'", "Steel.ST.Util.elim_pure", "FStar.Pervasives.Native.tuple10", "FStar.Pervasives.Native.Mktuple10", "Steel.ST.GenElim1.elim_exists'", "Steel.Effect.Common.VStar", "Steel.ST.Util.pure", "Steel.ST.Util.exists_", "Steel.Effect.Common.star", "Steel.ST.GenElim1.compute_gen_elim_nondep_correct_t" ]
[]
false
false
false
false
false
let compute_gen_elim_nondep_correct10 (i0: gen_elim_i) (t1 t2 t3 t4 t5 t6 t7 t8 t9 t10: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5; t6; t7; t8; t9; t10]) =
fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> exists_ (fun x3 -> exists_ (fun x4 -> exists_ (fun x5 -> exists_ (fun x6 -> exists_ (fun x7 -> exists_ (fun x8 -> exists_ (fun x9 -> exists_ (fun x10 -> (q x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 (U.raise_val ())) `star` (pure (post x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 (U.raise_val ()) ))))))))))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let x3 = elim_exists' () in let x4 = elim_exists' () in let x5 = elim_exists' () in let x6 = elim_exists' () in let x7 = elim_exists' () in let x8 = elim_exists' () in let x9 = elim_exists' () in let x10 = elim_exists' () in let res = Mktuple10 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 in elim_pure _; rewrite_with_trefl (q _ _ _ _ _ _ _ _ _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.alloca
val alloca: a:supported_alg -> StackInline (state a) (requires fun _ -> True) (ensures fun h0 st h1 -> B.modifies B.loc_none h0 h1 /\ B.fresh_loc (footprint st h1) h0 h1 /\ B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint st h1)) /\ invariant st h1)
val alloca: a:supported_alg -> StackInline (state a) (requires fun _ -> True) (ensures fun h0 st h1 -> B.modifies B.loc_none h0 h1 /\ B.fresh_loc (footprint st h1) h0 h1 /\ B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint st h1)) /\ invariant st h1)
let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 78, "start_col": 0, "start_line": 70 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.HMAC_DRBG.supported_alg -> FStar.HyperStack.ST.StackInline (EverCrypt.DRBG.state a)
FStar.HyperStack.ST.StackInline
[]
[]
[ "Hacl.HMAC_DRBG.supported_alg", "LowStar.Buffer.alloca", "EverCrypt.DRBG.state_s", "FStar.UInt32.__uint_to_t", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Buffer.trivial_preorder", "Prims.l_and", "Prims.eq2", "Prims.nat", "LowStar.Monotonic.Buffer.length", "FStar.UInt32.v", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "EverCrypt.DRBG.SHA1_s", "Hacl.HMAC_DRBG.state", "Spec.Hash.Definitions.SHA1", "Hacl.HMAC_DRBG.alloca", "EverCrypt.DRBG.SHA2_256_s", "Spec.Hash.Definitions.SHA2_256", "EverCrypt.DRBG.SHA2_384_s", "Spec.Hash.Definitions.SHA2_384", "EverCrypt.DRBG.SHA2_512_s", "Spec.Hash.Definitions.SHA2_512", "EverCrypt.DRBG.state" ]
[]
false
true
false
false
false
let alloca a =
let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_der_length_payload_kind_weak
val parse_der_length_payload_kind_weak:parser_kind
val parse_der_length_payload_kind_weak:parser_kind
let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 31, "end_line": 215, "start_col": 0, "start_line": 214 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.parser_kind
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.strong_parser_kind", "FStar.Pervasives.Native.None", "LowParse.Spec.Base.parser_kind_metadata_some" ]
[]
false
false
false
true
false
let parse_der_length_payload_kind_weak:parser_kind =
strong_parser_kind 0 126 None
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_der_length_weak_kind
val parse_der_length_weak_kind:parser_kind
val parse_der_length_weak_kind:parser_kind
let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 109, "end_line": 218, "start_col": 0, "start_line": 218 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.parser_kind
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Combinators.and_then_kind", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.DER.parse_der_length_payload_kind_weak" ]
[]
false
false
false
true
false
let parse_der_length_weak_kind:parser_kind =
and_then_kind parse_u8_kind parse_der_length_payload_kind_weak
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_bounded_der_length_tag_cond
val parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t{min <= max}) (x: U8.t) : Tot bool
val parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t{min <= max}) (x: U8.t) : Tot bool
let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 120, "end_line": 245, "start_col": 0, "start_line": 240 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max })
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> x: FStar.UInt8.t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt8.t", "Prims.op_AmpAmp", "LowParse.Spec.DER.der_length_payload_size", "Prims.nat", "LowParse.Spec.DER.der_length_payload_size_of_tag", "Prims.bool" ]
[]
false
false
false
false
false
let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t{min <= max}) (x: U8.t) : Tot bool =
let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_bounded_der_length_kind
val parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t{min <= max}) : Tot parser_kind
val parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t{min <= max}) : Tot parser_kind
let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 51, "end_line": 274, "start_col": 0, "start_line": 268 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> LowParse.Spec.Base.parser_kind
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.Combinators.and_then_kind", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.DER.parse_bounded_der_length_payload_kind", "LowParse.Spec.Base.parser_kind" ]
[]
false
false
false
false
false
let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t{min <= max}) : Tot parser_kind =
and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max)
false
EverCrypt.DRBG.fst
EverCrypt.DRBG.create_in
val create_in: a:supported_alg -> r:HS.rid -> ST (state a) (requires fun _ -> is_eternal_region r) (ensures fun h0 st h1 -> B.modifies B.loc_none h0 h1 /\ B.fresh_loc (footprint st h1) h0 h1 /\ B.(loc_includes (loc_region_only true r) (footprint st h1)) /\ invariant st h1 /\ freeable st h1)
val create_in: a:supported_alg -> r:HS.rid -> ST (state a) (requires fun _ -> is_eternal_region r) (ensures fun h0 st h1 -> B.modifies B.loc_none h0 h1 /\ B.fresh_loc (footprint st h1) h0 h1 /\ B.(loc_includes (loc_region_only true r) (footprint st h1)) /\ invariant st h1 /\ freeable st h1)
let create_in a r = let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 19, "end_line": 88, "start_col": 0, "start_line": 80 }
module EverCrypt.DRBG open FStar.HyperStack.ST open Lib.IntTypes open Spec.Hash.Definitions module HS = FStar.HyperStack module B = LowStar.Buffer module S = Spec.HMAC_DRBG open Hacl.HMAC_DRBG open Lib.RandomBuffer.System open LowStar.BufferOps friend Hacl.HMAC_DRBG friend EverCrypt.HMAC #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 50" /// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it /// /// Respects EverCrypt convention and reverses order of buf_len, buf arguments [@CAbstractStruct] noeq type state_s: supported_alg -> Type0 = | SHA1_s : state SHA1 -> state_s SHA1 | SHA2_256_s: state SHA2_256 -> state_s SHA2_256 | SHA2_384_s: state SHA2_384 -> state_s SHA2_384 | SHA2_512_s: state SHA2_512 -> state_s SHA2_512 let invert_state_s (a:supported_alg): Lemma (requires True) (ensures inversion (state_s a)) [ SMTPat (state_s a) ] = allow_inversion (state_s a) /// Only call this function in extracted code with a known `a` inline_for_extraction noextract let p #a (s:state_s a) : Hacl.HMAC_DRBG.state a = match a with | SHA1 -> let SHA1_s p = s in p | SHA2_256 -> let SHA2_256_s p = s in p | SHA2_384 -> let SHA2_384_s p = s in p | SHA2_512 -> let SHA2_512_s p = s in p let freeable_s #a st = freeable (p st) let footprint_s #a st = footprint (p st) let invariant_s #a st h = invariant (p st) h let repr #a st h = let st = B.get h st 0 in repr (p st) h let loc_includes_union_l_footprint_s #a l1 l2 st = B.loc_includes_union_l l1 l2 (footprint_s st) let invariant_loc_in_footprint #a st m = () let frame_invariant #a l st h0 h1 = () /// State allocation // Would like to specialize alloca in each branch, but two calls to StackInline // functions in the same block lead to variable redefinitions at extraction. let alloca a = let st = match a with | SHA1 -> SHA1_s (alloca a) | SHA2_256 -> SHA2_256_s (alloca a) | SHA2_384 -> SHA2_384_s (alloca a) | SHA2_512 -> SHA2_512_s (alloca a) in B.alloca st 1ul
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.Memzero0.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.HMAC_DRBG.fst.checked", "Hacl.HMAC_DRBG.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverCrypt.HMAC.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.DRBG.fst" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "Lib.RandomBuffer.System", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC_DRBG", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.HMAC_DRBG.supported_alg -> r: FStar.Monotonic.HyperHeap.rid -> FStar.HyperStack.ST.ST (EverCrypt.DRBG.state a)
FStar.HyperStack.ST.ST
[]
[]
[ "Hacl.HMAC_DRBG.supported_alg", "FStar.Monotonic.HyperHeap.rid", "LowStar.Buffer.malloc", "EverCrypt.DRBG.state_s", "FStar.UInt32.__uint_to_t", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Buffer.trivial_preorder", "Prims.l_and", "Prims.eq2", "Prims.nat", "LowStar.Monotonic.Buffer.length", "FStar.UInt32.v", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.freeable", "EverCrypt.DRBG.SHA1_s", "Hacl.HMAC_DRBG.state", "Spec.Hash.Definitions.SHA1", "Hacl.HMAC_DRBG.create_in", "EverCrypt.DRBG.SHA2_256_s", "Spec.Hash.Definitions.SHA2_256", "EverCrypt.DRBG.SHA2_384_s", "Spec.Hash.Definitions.SHA2_384", "EverCrypt.DRBG.SHA2_512_s", "Spec.Hash.Definitions.SHA2_512", "EverCrypt.DRBG.state" ]
[]
false
true
false
false
false
let create_in a r =
let st = match a with | SHA1 -> SHA1_s (create_in SHA1 r) | SHA2_256 -> SHA2_256_s (create_in SHA2_256 r) | SHA2_384 -> SHA2_384_s (create_in SHA2_384 r) | SHA2_512 -> SHA2_512_s (create_in SHA2_512 r) in B.malloc r st 1ul
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.log256_le
val log256_le (x1 x2: nat) : Lemma (requires (0 < x1 /\ x1 <= x2)) (ensures (log256 x1 <= log256 x2))
val log256_le (x1 x2: nat) : Lemma (requires (0 < x1 /\ x1 <= x2)) (ensures (log256 x1 <= log256 x2))
let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 58, "end_line": 43, "start_col": 0, "start_line": 40 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x1: Prims.nat -> x2: Prims.nat -> FStar.Pervasives.Lemma (requires 0 < x1 /\ x1 <= x2) (ensures LowParse.Spec.DER.log256 x1 <= LowParse.Spec.DER.log256 x2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "LowParse.Math.pow2_lt_recip", "FStar.Mul.op_Star", "Prims.op_Subtraction", "LowParse.Spec.DER.log256", "Prims.unit" ]
[]
true
false
true
false
false
let log256_le x1 x2 =
Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2)
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.log256
val log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)})
val log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)})
let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 32, "start_col": 0, "start_line": 21 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat{x > 0} -> y: Prims.nat{y > 0 /\ Prims.pow2 (8 * (y - 1)) <= x /\ x < Prims.pow2 (8 * y)}
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThan", "Prims.bool", "Prims.op_Addition", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.pow2", "Prims.op_Multiply", "Prims.op_Division", "LowParse.Spec.DER.log256", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int" ]
[ "recursion" ]
false
false
false
false
false
let rec log256 (x: nat{x > 0}) : Tot (y: nat{y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) =
assert_norm (pow2 8 == 256); if x < 256 then 1 else let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.synth_be_int_injective
val synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))]
val synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))]
let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' )
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 73, "start_col": 0, "start_line": 65 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Combinators.synth_injective (LowParse.Spec.DER.synth_be_int len)) [SMTPat (LowParse.Spec.Combinators.synth_injective (LowParse.Spec.DER.synth_be_int len))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "LowParse.Spec.Combinators.synth_injective_intro'", "FStar.Seq.Properties.lseq", "LowParse.Bytes.byte", "LowParse.Spec.DER.lint", "LowParse.Spec.DER.synth_be_int", "FStar.Endianness.be_to_n_inj", "Prims.unit", "Prims.l_True", "Prims.squash", "LowParse.Spec.Combinators.synth_injective", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
false
false
true
false
false
let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] =
synth_injective_intro' (synth_be_int len) (fun (x: Seq.lseq byte len) (x': Seq.lseq byte len) -> E.be_to_n_inj x x')
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.log256_unique
val log256_unique (x: nat) (y: nat) : Lemma (requires ( x > 0 /\ y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y) )) (ensures (y == log256 x))
val log256_unique (x: nat) (y: nat) : Lemma (requires ( x > 0 /\ y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y) )) (ensures (y == log256 x))
let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 49, "end_line": 38, "start_col": 0, "start_line": 34 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> y: Prims.nat -> FStar.Pervasives.Lemma (requires x > 0 /\ y > 0 /\ Prims.pow2 (8 * (y - 1)) <= x /\ x < Prims.pow2 (8 * y)) (ensures y == LowParse.Spec.DER.log256 x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "LowParse.Math.pow2_lt_recip", "FStar.Mul.op_Star", "Prims.op_Subtraction", "LowParse.Spec.DER.log256", "Prims.unit" ]
[]
true
false
true
false
false
let log256_unique x y =
Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y)
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.synth_be_int
val synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len)
val synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len)
let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 13, "end_line": 63, "start_col": 0, "start_line": 58 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> b: FStar.Seq.Properties.lseq LowParse.Bytes.byte len -> LowParse.Spec.DER.lint len
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.Seq.Properties.lseq", "LowParse.Bytes.byte", "FStar.Endianness.be_to_n", "Prims.unit", "FStar.Endianness.lemma_be_to_n_is_bounded", "LowParse.Spec.DER.lint" ]
[]
false
false
false
false
false
let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) =
E.lemma_be_to_n_is_bounded b; E.be_to_n b
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_der_length_weak
val parse_der_length_weak:parser parse_der_length_weak_kind der_length_t
val parse_der_length_weak:parser parse_der_length_weak_kind der_length_t
let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 85, "end_line": 224, "start_col": 0, "start_line": 220 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.parser LowParse.Spec.DER.parse_der_length_weak_kind LowParse.Spec.DER.der_length_t
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Combinators.parse_tagged_union", "LowParse.Spec.Int.parse_u8_kind", "FStar.UInt8.t", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.DER.der_length_t", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Spec.DER.parse_der_length_payload_kind_weak", "LowParse.Spec.Base.weaken", "LowParse.Spec.DER.parse_der_length_payload_kind", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.parse_der_length_payload", "LowParse.Spec.Base.parser" ]
[]
false
false
false
true
false
let parse_der_length_weak:parser parse_der_length_weak_kind der_length_t =
parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_bounded_der_length_payload_kind
val parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t{min <= max}) : Tot parser_kind
val parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t{min <= max}) : Tot parser_kind
let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 85, "end_line": 232, "start_col": 0, "start_line": 227 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> LowParse.Spec.Base.parser_kind
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.Base.strong_parser_kind", "LowParse.Spec.DER.der_length_payload_size", "FStar.Pervasives.Native.None", "LowParse.Spec.Base.parser_kind_metadata_some", "Prims.unit", "LowParse.Spec.DER.der_length_payload_size_le", "LowParse.Spec.Base.parser_kind" ]
[]
false
false
false
false
false
let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t{min <= max}) : Tot parser_kind =
[@@ inline_let ]let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.tag_of_bounded_der_length
val tag_of_bounded_der_length (min: der_length_t) (max: der_length_t{min <= max}) (x: bounded_int min max) : Tot (y: U8.t{parse_bounded_der_length_tag_cond min max y == true})
val tag_of_bounded_der_length (min: der_length_t) (max: der_length_t{min <= max}) (x: bounded_int min max) : Tot (y: U8.t{parse_bounded_der_length_tag_cond min max y == true})
let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 21, "end_line": 255, "start_col": 0, "start_line": 248 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> x: LowParse.Spec.DER.bounded_int min max -> y: FStar.UInt8.t{LowParse.Spec.DER.parse_bounded_der_length_tag_cond min max y == true}
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.DER.tag_of_der_length", "Prims.unit", "LowParse.Spec.DER.der_length_payload_size_le", "FStar.UInt8.t", "Prims.eq2", "Prims.bool", "LowParse.Spec.DER.parse_bounded_der_length_tag_cond" ]
[]
false
false
false
false
false
let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t{min <= max}) (x: bounded_int min max) : Tot (y: U8.t{parse_bounded_der_length_tag_cond min max y == true}) =
[@@ inline_let ]let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_bounded_der_length_payload
val parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t{min <= max}) (x: U8.t{parse_bounded_der_length_tag_cond min max x == true}) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x))
val parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t{min <= max}) (x: U8.t{parse_bounded_der_length_tag_cond min max x == true}) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x))
let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)))
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 156, "end_line": 265, "start_col": 0, "start_line": 257 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> x: FStar.UInt8.t{LowParse.Spec.DER.parse_bounded_der_length_tag_cond min max x == true} -> LowParse.Spec.Base.parser (LowParse.Spec.DER.parse_bounded_der_length_payload_kind min max) (LowParse.Spec.Base.refine_with_tag (LowParse.Spec.DER.tag_of_bounded_der_length min max) x)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt8.t", "Prims.eq2", "Prims.bool", "LowParse.Spec.DER.parse_bounded_der_length_tag_cond", "LowParse.Spec.Base.weaken", "LowParse.Spec.DER.parse_bounded_der_length_payload_kind", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.DER.parse_der_length_payload_kind", "LowParse.Spec.Base.refine_with_tag", "Prims.l_or", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.DER.tag_of_bounded_der_length", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.DER.tag_of_der_length", "Prims.op_AmpAmp", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.DER.parse_der_length_payload", "LowParse.Spec.Base.parser" ]
[]
false
false
false
false
false
let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t{min <= max}) (x: U8.t{parse_bounded_der_length_tag_cond min max x == true}) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) =
weaken (parse_bounded_der_length_payload_kind min max) (((parse_der_length_payload x) `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x {min <= y && y <= max}) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)))
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_bounded_der_length_weak
val parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t{min <= max}) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max))
val parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t{min <= max}) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max))
let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 94, "end_line": 372, "start_col": 0, "start_line": 366 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> LowParse.Spec.Base.parser (LowParse.Spec.Combinators.parse_filter_kind LowParse.Spec.DER.parse_der_length_weak_kind ) (LowParse.Spec.DER.bounded_int min max)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.DER.parse_der_length_weak_kind", "LowParse.Spec.Combinators.parse_filter_refine", "Prims.op_AmpAmp", "Prims.bool", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.DER.parse_der_length_weak", "LowParse.Spec.Base.parser" ]
[]
false
false
false
false
false
let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t{min <= max}) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) =
(parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) `parse_synth` (fun (y: der_length_t{min <= y && y <= max}) -> (y <: bounded_int min max))
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_bounded_der_length_eq
val parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t{min <= max}) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input))
val parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t{min <= max}) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input))
let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 9, "end_line": 422, "start_col": 0, "start_line": 404 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> input: LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_bounded_der_length min max) input == LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_bounded_der_length_weak min max) input)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Bytes.bytes", "LowParse.Spec.Base.parse", "FStar.UInt8.t", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Spec.DER.parse_der_length_payload", "Prims.op_AmpAmp", "LowParse.Spec.DER.der_length_payload_size_le", "Prims.unit", "Prims.bool", "FStar.Seq.Base.seq", "LowParse.Bytes.byte", "FStar.Seq.Base.slice", "FStar.Seq.Base.length", "LowParse.Spec.DER.parse_bounded_der_length_weak_unfold", "LowParse.Spec.DER.parse_bounded_der_length_unfold", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.DER.parse_bounded_der_length", "LowParse.Spec.DER.parse_bounded_der_length_weak", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t{min <= max}) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) =
parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max)
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_bounded_der_length
val parse_bounded_der_length (min: der_length_t) (max: der_length_t{min <= max}) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max))
val parse_bounded_der_length (min: der_length_t) (max: der_length_t{min <= max}) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max))
let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 46, "end_line": 283, "start_col": 0, "start_line": 276 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> LowParse.Spec.Base.parser (LowParse.Spec.DER.parse_bounded_der_length_kind min max) (LowParse.Spec.DER.bounded_int min max)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.Combinators.parse_tagged_union", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Combinators.parse_filter_refine", "FStar.UInt8.t", "LowParse.Spec.DER.parse_bounded_der_length_tag_cond", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.DER.tag_of_bounded_der_length", "LowParse.Spec.DER.parse_bounded_der_length_payload_kind", "LowParse.Spec.DER.parse_bounded_der_length_payload", "LowParse.Spec.Base.parser", "LowParse.Spec.DER.parse_bounded_der_length_kind" ]
[]
false
false
false
false
false
let parse_bounded_der_length (min: der_length_t) (max: der_length_t{min <= max}) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) =
parse_tagged_union (parse_u8 `parse_filter` (parse_bounded_der_length_tag_cond min max)) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max)
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.synth_be_int_recip
val synth_be_int_recip (len: nat) (x: lint len) : GTot (b : Seq.lseq byte len)
val synth_be_int_recip (len: nat) (x: lint len) : GTot (b : Seq.lseq byte len)
let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 17, "end_line": 473, "start_col": 0, "start_line": 469 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> x: LowParse.Spec.DER.lint len -> Prims.GTot (FStar.Seq.Properties.lseq LowParse.Bytes.byte len)
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.nat", "LowParse.Spec.DER.lint", "FStar.Endianness.n_to_be", "FStar.Seq.Properties.lseq", "LowParse.Bytes.byte" ]
[]
false
false
false
false
false
let synth_be_int_recip (len: nat) (x: lint len) : GTot (b : Seq.lseq byte len) =
E.n_to_be len x
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_bounded_der_length_unfold_aux
val parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t{min <= max}) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None))
val parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t{min <= max}) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None))
let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 76, "end_line": 334, "start_col": 0, "start_line": 312 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> input: LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_bounded_der_length min max) input == (match LowParse.Spec.Base.parse LowParse.Spec.Int.parse_u8 input with | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ x consumed_x) -> let len = LowParse.Spec.DER.der_length_payload_size_of_tag x in (match LowParse.Spec.DER.der_length_payload_size min <= len && len <= LowParse.Spec.DER.der_length_payload_size max with | true -> let input' = FStar.Seq.Base.slice input consumed_x (FStar.Seq.Base.length input) in (match LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_bounded_der_length_payload min max x) input' with | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ y consumed_y) -> FStar.Pervasives.Native.Some (y, consumed_x + consumed_y) | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None) <: FStar.Pervasives.Native.option (LowParse.Spec.DER.bounded_int min max * LowParse.Spec.Base.consumed_length input) | _ -> FStar.Pervasives.Native.None) <: FStar.Pervasives.Native.option (LowParse.Spec.DER.bounded_int min max * LowParse.Spec.Base.consumed_length input)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Bytes.bytes", "LowParse.Spec.Combinators.parse_filter_eq", "LowParse.Spec.Int.parse_u8_kind", "FStar.UInt8.t", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.DER.parse_bounded_der_length_tag_cond", "Prims.unit", "LowParse.Spec.Combinators.parse_tagged_union_eq", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.DER.tag_of_bounded_der_length", "LowParse.Spec.DER.parse_bounded_der_length_payload_kind", "LowParse.Spec.DER.parse_bounded_der_length_payload", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.parse", "LowParse.Spec.DER.parse_bounded_der_length", "FStar.Pervasives.Native.None", "Prims.op_AmpAmp", "LowParse.Spec.DER.der_length_payload_size", "LowParse.Spec.Base.refine_with_tag", "Prims.l_or", "Prims.bool", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "Prims.op_Addition", "FStar.Seq.Base.seq", "LowParse.Bytes.byte", "FStar.Seq.Base.slice", "FStar.Seq.Base.length", "Prims.nat", "LowParse.Spec.DER.der_length_payload_size_of_tag", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t{min <= max}) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None)) =
parse_tagged_union_eq (parse_u8 `parse_filter` (parse_bounded_der_length_tag_cond min max)) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.der_length_max_eq
val der_length_max_eq : squash (der_length_max == pow2 (8 * 126) - 1)
val der_length_max_eq : squash (der_length_max == pow2 (8 * 126) - 1)
let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 52, "end_line": 19, "start_col": 0, "start_line": 18 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`())))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.squash (LowParse.Spec.DER.der_length_max == Prims.pow2 (8 * 126) - 1)
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "LowParse.Spec.DER.der_length_max", "Prims.op_Subtraction", "Prims.pow2", "FStar.Mul.op_Star" ]
[]
false
false
true
false
false
let der_length_max_eq =
assert_norm (der_length_max == pow2 (8 * 126) - 1)
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.synth_der_length_129
val synth_der_length_129 (x: U8.t{x == 129uy}) (y: U8.t{U8.v y >= 128}) : Tot (refine_with_tag tag_of_der_length x)
val synth_der_length_129 (x: U8.t{x == 129uy}) (y: U8.t{U8.v y >= 128}) : Tot (refine_with_tag tag_of_der_length x)
let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 8, "end_line": 85, "start_col": 0, "start_line": 75 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t{x == 129uy} -> y: FStar.UInt8.t{FStar.UInt8.v y >= 128} -> LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length x
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "Prims.eq2", "FStar.UInt8.__uint_to_t", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt8.v", "Prims.unit", "LowParse.Spec.DER.log256_unique", "Prims._assert", "Prims.op_LessThanOrEqual", "LowParse.Spec.DER.der_length_max", "FStar.Pervasives.assert_norm", "Prims.op_LessThan", "Prims.int", "Prims.pow2", "Prims.op_Subtraction", "FStar.Mul.op_Star", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.der_length_t", "LowParse.Spec.DER.tag_of_der_length" ]
[]
false
false
false
false
false
let synth_der_length_129 (x: U8.t{x == 129uy}) (y: U8.t{U8.v y >= 128}) : Tot (refine_with_tag tag_of_der_length x) =
assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_bounded_der_length_unfold
val parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t{min <= max}) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None))
val parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t{min <= max}) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None))
let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else ()
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 11, "end_line": 364, "start_col": 0, "start_line": 336 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> input: LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_bounded_der_length min max) input == (match LowParse.Spec.Base.parse LowParse.Spec.Int.parse_u8 input with | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ x consumed_x) -> let len = LowParse.Spec.DER.der_length_payload_size_of_tag x in (match LowParse.Spec.DER.der_length_payload_size min <= len && len <= LowParse.Spec.DER.der_length_payload_size max with | true -> let input' = FStar.Seq.Base.slice input consumed_x (FStar.Seq.Base.length input) in (match LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_der_length_payload x) input' with | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ y consumed_y) -> (match min <= y && y <= max with | true -> FStar.Pervasives.Native.Some (y, consumed_x + consumed_y) | _ -> FStar.Pervasives.Native.None) <: FStar.Pervasives.Native.option (LowParse.Spec.DER.bounded_int min max * LowParse.Spec.Base.consumed_length input)) <: FStar.Pervasives.Native.option (LowParse.Spec.DER.bounded_int min max * LowParse.Spec.Base.consumed_length input) | _ -> FStar.Pervasives.Native.None) <: FStar.Pervasives.Native.option (LowParse.Spec.DER.bounded_int min max * LowParse.Spec.Base.consumed_length input)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Bytes.bytes", "LowParse.Spec.Base.parse", "FStar.UInt8.t", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.Base.consumed_length", "Prims.op_AmpAmp", "LowParse.Spec.DER.der_length_payload_size", "LowParse.Spec.DER.parse_bounded_der_length_payload_unfold", "Prims.eq2", "Prims.bool", "LowParse.Spec.DER.parse_bounded_der_length_tag_cond", "FStar.Seq.Base.seq", "LowParse.Bytes.byte", "FStar.Seq.Base.slice", "FStar.Seq.Base.length", "Prims.unit", "Prims.nat", "LowParse.Spec.DER.der_length_payload_size_of_tag", "LowParse.Spec.DER.parse_bounded_der_length_unfold_aux", "Prims.l_True", "Prims.squash", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.DER.parse_bounded_der_length", "FStar.Pervasives.Native.None", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Spec.DER.parse_der_length_payload", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t{min <= max}) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None)) =
parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t{parse_bounded_der_length_tag_cond min max x == true})) input'
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.tag_of_der_length_eq_129_eta
val tag_of_der_length_eq_129_eta : x: FStar.UInt8.t{FStar.UInt8.v x == 129} -> y: LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length x -> FStar.Pervasives.Lemma (ensures LowParse.Spec.DER.synth_der_length_129 x (LowParse.Spec.DER.synth_der_length_129_recip x y) == y)
let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 148, "end_line": 532, "start_col": 0, "start_line": 531 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t{FStar.UInt8.v x == 129} -> y: LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length x -> FStar.Pervasives.Lemma (ensures LowParse.Spec.DER.synth_der_length_129 x (LowParse.Spec.DER.synth_der_length_129_recip x y) == y)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt8.t", "Prims.eq2", "Prims.int", "FStar.UInt8.v", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.der_length_t", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Spec.DER.tag_of_der_length_eq_129", "Prims.unit", "Prims.l_True", "Prims.squash", "LowParse.Spec.DER.synth_der_length_129", "LowParse.Spec.DER.synth_der_length_129_recip", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let tag_of_der_length_eq_129_eta (x: U8.t{U8.v x == 129}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y)
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.synth_der_length_129_recip
val synth_der_length_129_recip (x: U8.t{x == 129uy}) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t{U8.v y >= 128})
val synth_der_length_129_recip (x: U8.t{x == 129uy}) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t{U8.v y >= 128})
let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 16, "end_line": 467, "start_col": 0, "start_line": 462 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t{x == 129uy} -> y: LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length x -> Prims.GTot (y: FStar.UInt8.t{FStar.UInt8.v y >= 128})
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.UInt8.t", "Prims.eq2", "FStar.UInt8.__uint_to_t", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.der_length_t", "LowParse.Spec.DER.tag_of_der_length", "FStar.UInt8.uint_to_t", "Prims.unit", "LowParse.Spec.DER.tag_of_der_length_eq_129", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let synth_der_length_129_recip (x: U8.t{x == 129uy}) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t{U8.v y >= 128}) =
tag_of_der_length_eq_129 y; U8.uint_to_t y
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.der_length_payload_size_le
val der_length_payload_size_le (x1 x2: der_length_t) : Lemma (requires (x1 <= x2)) (ensures (der_length_payload_size x1 <= der_length_payload_size x2))
val der_length_payload_size_le (x1 x2: der_length_t) : Lemma (requires (x1 <= x2)) (ensures (der_length_payload_size x1 <= der_length_payload_size x2))
let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 53, "end_line": 56, "start_col": 0, "start_line": 45 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x1: LowParse.Spec.DER.der_length_t -> x2: LowParse.Spec.DER.der_length_t -> FStar.Pervasives.Lemma (requires x1 <= x2) (ensures LowParse.Spec.DER.der_length_payload_size x1 <= LowParse.Spec.DER.der_length_payload_size x2 )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.op_BarBar", "Prims.op_LessThan", "Prims.bool", "LowParse.Math.pow2_lt_recip", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "LowParse.Spec.DER.der_length_max", "Prims.pow2", "LowParse.Spec.DER.log256_le", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Multiply", "LowParse.Spec.DER.log256" ]
[]
false
false
true
false
false
let der_length_payload_size_le x1 x2 =
if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126)
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_bounded_der_length_weak_unfold
val parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t{min <= max}) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None))
val parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t{min <= max}) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None))
let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 9, "end_line": 402, "start_col": 0, "start_line": 374 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> input: LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_bounded_der_length_weak min max) input == (match LowParse.Spec.Base.parse LowParse.Spec.Int.parse_u8 input with | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ x consumed_x) -> let input' = FStar.Seq.Base.slice input consumed_x (FStar.Seq.Base.length input) in (match LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_der_length_payload x) input' with | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ y consumed_y) -> (match min <= y && y <= max with | true -> FStar.Pervasives.Native.Some (y, consumed_x + consumed_y) | _ -> FStar.Pervasives.Native.None) <: FStar.Pervasives.Native.option (LowParse.Spec.DER.bounded_int min max * LowParse.Spec.Base.consumed_length input)) <: FStar.Pervasives.Native.option (LowParse.Spec.DER.bounded_int min max * LowParse.Spec.Base.consumed_length input)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Bytes.bytes", "LowParse.Spec.Combinators.parse_tagged_union_eq", "LowParse.Spec.Int.parse_u8_kind", "FStar.UInt8.t", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Spec.DER.parse_der_length_payload_kind_weak", "LowParse.Spec.Base.weaken", "LowParse.Spec.DER.parse_der_length_payload_kind", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.parse_der_length_payload", "LowParse.Spec.Base.parser", "Prims.unit", "LowParse.Spec.Combinators.parse_filter_eq", "LowParse.Spec.DER.parse_der_length_weak_kind", "LowParse.Spec.DER.parse_der_length_weak", "Prims.op_AmpAmp", "Prims.bool", "LowParse.Spec.Combinators.parse_synth_eq", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.Combinators.parse_filter", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.parse", "LowParse.Spec.DER.parse_bounded_der_length_weak", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "Prims.op_Addition", "FStar.Seq.Base.seq", "LowParse.Bytes.byte", "FStar.Seq.Base.slice", "FStar.Seq.Base.length", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t{min <= max}) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None)) =
parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t{min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.tag_of_der_length_invalid_eta
val tag_of_der_length_invalid_eta : x: FStar.UInt8.t{FStar.UInt8.v x == 128 \/ FStar.UInt8.v x == 255} -> y: LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length x -> FStar.Pervasives.Lemma (ensures Prims.l_False)
let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 92, "end_line": 529, "start_col": 0, "start_line": 528 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t{FStar.UInt8.v x == 128 \/ FStar.UInt8.v x == 255} -> y: LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length x -> FStar.Pervasives.Lemma (ensures Prims.l_False)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt8.t", "Prims.l_or", "Prims.eq2", "Prims.int", "FStar.UInt8.v", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.der_length_t", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Spec.DER.tag_of_der_length_invalid", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_False", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let tag_of_der_length_invalid_eta (x: U8.t{U8.v x == 128 \/ U8.v x == 255}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.tag_of_der_length_lt_128_eta
val tag_of_der_length_lt_128_eta : x: FStar.UInt8.t{FStar.UInt8.v x < 128} -> y: LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length x -> FStar.Pervasives.Lemma (ensures FStar.UInt8.v x == y)
let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 99, "end_line": 526, "start_col": 0, "start_line": 525 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t{FStar.UInt8.v x < 128} -> y: LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length x -> FStar.Pervasives.Lemma (ensures FStar.UInt8.v x == y)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt8.t", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt8.v", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.der_length_t", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Spec.DER.tag_of_der_length_lt_128", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt8.n", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThanOrEqual", "LowParse.Spec.DER.der_length_max", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let tag_of_der_length_lt_128_eta (x: U8.t{U8.v x < 128}) =
fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y)
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_bounded_der_length_payload_unfold
val parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t{min <= max}) (x: U8.t{parse_bounded_der_length_tag_cond min max x == true}) (input': bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == (match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None))
val parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t{min <= max}) (x: U8.t{parse_bounded_der_length_tag_cond min max x == true}) (input': bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == (match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None))
let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input'
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 16, "end_line": 310, "start_col": 0, "start_line": 287 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> x: FStar.UInt8.t{LowParse.Spec.DER.parse_bounded_der_length_tag_cond min max x == true} -> input': LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_bounded_der_length_payload min max x) input' == (match LowParse.Spec.Base.parse (LowParse.Spec.DER.parse_der_length_payload x) input' with | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ y consumed_y) -> (match min <= y && y <= max with | true -> FStar.Pervasives.Native.Some (y, consumed_y) | _ -> FStar.Pervasives.Native.None) <: FStar.Pervasives.Native.option (LowParse.Spec.Base.refine_with_tag (LowParse.Spec.DER.tag_of_bounded_der_length min max) x * LowParse.Spec.Base.consumed_length input')))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt8.t", "Prims.eq2", "Prims.bool", "LowParse.Spec.DER.parse_bounded_der_length_tag_cond", "LowParse.Bytes.bytes", "LowParse.Spec.Combinators.parse_filter_eq", "LowParse.Spec.DER.parse_der_length_payload_kind", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Spec.DER.parse_der_length_payload", "Prims.op_AmpAmp", "Prims.unit", "LowParse.Spec.Combinators.parse_synth_eq", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Combinators.parse_filter_refine", "Prims.l_or", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.DER.tag_of_bounded_der_length", "LowParse.Spec.Combinators.parse_filter", "Prims.l_True", "Prims.squash", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.parse", "LowParse.Spec.DER.parse_bounded_der_length_payload", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t{min <= max}) (x: U8.t{parse_bounded_der_length_tag_cond min max x == true}) (input': bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == (match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None)) =
parse_synth_eq ((parse_der_length_payload x) `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x {min <= y && y <= max}) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input'; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input'
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.serialize_bounded_der_length
val serialize_bounded_der_length (min: der_length_t) (max: der_length_t{min <= max}) : Tot (serializer (parse_bounded_der_length min max))
val serialize_bounded_der_length (min: der_length_t) (max: der_length_t{min <= max}) : Tot (serializer (parse_bounded_der_length min max))
let serialize_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length min max)) = Classical.forall_intro (parse_bounded_der_length_eq min max); serialize_ext _ (serialize_bounded_der_length_weak min max) (parse_bounded_der_length min max)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 38, "end_line": 715, "start_col": 0, "start_line": 707 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x)) end else if x = 128uy || x = 255uy then fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x) else if x = 129uy then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) ) end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? serialize_weaken (parse_der_length_payload_kind x) (serialize_der_length_payload_greater x len) end let serialize_der_length_weak : serializer parse_der_length_weak = serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x)) #push-options "--max_ifuel 6 --z3rlimit 64" let serialize_der_length_weak_unfold (y: der_length_t) : Lemma (let res = serialize serialize_der_length_weak y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = let x = tag_of_der_length y in serialize_u8_spec x; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy || x = 255uy then tag_of_der_length_invalid y else if x = 129uy then begin tag_of_der_length_eq_129 y; assert (U8.v (synth_der_length_129_recip x y) == y); let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))) y in serialize_synth_eq' #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) y s1 () (serialize serialize_u8 (synth_der_length_129_recip x y)) () ; serialize_u8_spec (U8.uint_to_t y); () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? assert ( serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y ); serialize_synth_eq' #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () y (serialize (serialize_der_length_payload_greater x len) y) (_ by (FStar.Tactics.trefl ())) (serialize (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (synth_der_length_greater_recip x len y) ) () ; serialize_synth_eq _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () (synth_der_length_greater_recip x len y); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); () end; () #pop-options let serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length_weak min max)) = serialize_synth _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> LowParse.Spec.Base.serializer (LowParse.Spec.DER.parse_bounded_der_length min max)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.Base.serialize_ext", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.DER.parse_der_length_weak_kind", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.DER.parse_bounded_der_length_weak", "LowParse.Spec.DER.serialize_bounded_der_length_weak", "LowParse.Spec.DER.parse_bounded_der_length_kind", "LowParse.Spec.DER.parse_bounded_der_length", "Prims.unit", "FStar.Classical.forall_intro", "LowParse.Bytes.bytes", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.parse", "LowParse.Spec.DER.parse_bounded_der_length_eq", "LowParse.Spec.Base.serializer" ]
[]
false
false
false
false
false
let serialize_bounded_der_length (min: der_length_t) (max: der_length_t{min <= max}) : Tot (serializer (parse_bounded_der_length min max)) =
Classical.forall_intro (parse_bounded_der_length_eq min max); serialize_ext _ (serialize_bounded_der_length_weak min max) (parse_bounded_der_length min max)
false
EverCrypt.Hash.Incremental.Macros.fst
EverCrypt.Hash.Incremental.Macros.sha2_256_hash_len
val sha2_256_hash_len : FStar.UInt32.t
let sha2_256_hash_len = 32ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.Incremental.Macros.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 8, "start_col": 12, "start_line": 8 }
// Separate module because -no-prefix module EverCrypt.Hash.Incremental.Macros (* These definitions for the benefits of C clients. *) [@ CMacro ] let md5_hash_len = 16ul [@ CMacro ] let sha1_hash_len = 20ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.Hash.Incremental.Macros.fst" }
[ { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let sha2_256_hash_len =
32ul
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.serialize_der_length_weak
val serialize_der_length_weak:serializer parse_der_length_weak
val serialize_der_length_weak:serializer parse_der_length_weak
let serialize_der_length_weak : serializer parse_der_length_weak = serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x))
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 99, "end_line": 573, "start_col": 0, "start_line": 569 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x)) end else if x = 128uy || x = 255uy then fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x) else if x = 129uy then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) ) end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? serialize_weaken (parse_der_length_payload_kind x) (serialize_der_length_payload_greater x len) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.serializer LowParse.Spec.DER.parse_der_length_weak
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Combinators.serialize_tagged_union", "LowParse.Spec.Int.parse_u8_kind", "FStar.UInt8.t", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.Int.serialize_u8", "LowParse.Spec.DER.der_length_t", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Spec.DER.parse_der_length_payload_kind_weak", "LowParse.Spec.Base.weaken", "LowParse.Spec.DER.parse_der_length_payload_kind", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.parse_der_length_payload", "LowParse.Spec.Base.parser", "LowParse.Spec.Combinators.serialize_weaken", "LowParse.Spec.DER.serialize_der_length_payload", "LowParse.Spec.Base.serializer" ]
[]
false
false
false
true
false
let serialize_der_length_weak:serializer parse_der_length_weak =
serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x))
false
EverCrypt.Hash.Incremental.Macros.fst
EverCrypt.Hash.Incremental.Macros.md5_hash_len
val md5_hash_len : FStar.UInt32.t
let md5_hash_len = 16ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.Incremental.Macros.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 5, "start_col": 12, "start_line": 5 }
// Separate module because -no-prefix module EverCrypt.Hash.Incremental.Macros
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.Hash.Incremental.Macros.fst" }
[ { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let md5_hash_len =
16ul
false
EverCrypt.Hash.Incremental.Macros.fst
EverCrypt.Hash.Incremental.Macros.sha1_hash_len
val sha1_hash_len : FStar.UInt32.t
let sha1_hash_len = 20ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.Incremental.Macros.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 36, "end_line": 6, "start_col": 12, "start_line": 6 }
// Separate module because -no-prefix module EverCrypt.Hash.Incremental.Macros (* These definitions for the benefits of C clients. *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.Hash.Incremental.Macros.fst" }
[ { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let sha1_hash_len =
20ul
false
EverCrypt.Hash.Incremental.Macros.fst
EverCrypt.Hash.Incremental.Macros.sha2_512_hash_len
val sha2_512_hash_len : FStar.UInt32.t
let sha2_512_hash_len = 64ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.Incremental.Macros.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 10, "start_col": 12, "start_line": 10 }
// Separate module because -no-prefix module EverCrypt.Hash.Incremental.Macros (* These definitions for the benefits of C clients. *) [@ CMacro ] let md5_hash_len = 16ul [@ CMacro ] let sha1_hash_len = 20ul [@ CMacro ] let sha2_224_hash_len = 28ul [@ CMacro ] let sha2_256_hash_len = 32ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.Hash.Incremental.Macros.fst" }
[ { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let sha2_512_hash_len =
64ul
false
EverCrypt.Hash.Incremental.Macros.fst
EverCrypt.Hash.Incremental.Macros.sha2_384_hash_len
val sha2_384_hash_len : FStar.UInt32.t
let sha2_384_hash_len = 48ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.Incremental.Macros.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 9, "start_col": 12, "start_line": 9 }
// Separate module because -no-prefix module EverCrypt.Hash.Incremental.Macros (* These definitions for the benefits of C clients. *) [@ CMacro ] let md5_hash_len = 16ul [@ CMacro ] let sha1_hash_len = 20ul [@ CMacro ] let sha2_224_hash_len = 28ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.Hash.Incremental.Macros.fst" }
[ { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let sha2_384_hash_len =
48ul
false
EverCrypt.Hash.Incremental.Macros.fst
EverCrypt.Hash.Incremental.Macros.sha2_224_hash_len
val sha2_224_hash_len : FStar.UInt32.t
let sha2_224_hash_len = 28ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.Incremental.Macros.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 7, "start_col": 12, "start_line": 7 }
// Separate module because -no-prefix module EverCrypt.Hash.Incremental.Macros (* These definitions for the benefits of C clients. *) [@ CMacro ] let md5_hash_len = 16ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.Hash.Incremental.Macros.fst" }
[ { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let sha2_224_hash_len =
28ul
false
EverCrypt.Hash.Incremental.Macros.fst
EverCrypt.Hash.Incremental.Macros.sha3_256_hash_len
val sha3_256_hash_len : FStar.UInt32.t
let sha3_256_hash_len = 32ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.Incremental.Macros.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 12, "start_col": 12, "start_line": 12 }
// Separate module because -no-prefix module EverCrypt.Hash.Incremental.Macros (* These definitions for the benefits of C clients. *) [@ CMacro ] let md5_hash_len = 16ul [@ CMacro ] let sha1_hash_len = 20ul [@ CMacro ] let sha2_224_hash_len = 28ul [@ CMacro ] let sha2_256_hash_len = 32ul [@ CMacro ] let sha2_384_hash_len = 48ul [@ CMacro ] let sha2_512_hash_len = 64ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.Hash.Incremental.Macros.fst" }
[ { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let sha3_256_hash_len =
32ul
false
EverCrypt.Hash.Incremental.Macros.fst
EverCrypt.Hash.Incremental.Macros.sha3_384_hash_len
val sha3_384_hash_len : FStar.UInt32.t
let sha3_384_hash_len = 48ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.Incremental.Macros.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 13, "start_col": 12, "start_line": 13 }
// Separate module because -no-prefix module EverCrypt.Hash.Incremental.Macros (* These definitions for the benefits of C clients. *) [@ CMacro ] let md5_hash_len = 16ul [@ CMacro ] let sha1_hash_len = 20ul [@ CMacro ] let sha2_224_hash_len = 28ul [@ CMacro ] let sha2_256_hash_len = 32ul [@ CMacro ] let sha2_384_hash_len = 48ul [@ CMacro ] let sha2_512_hash_len = 64ul [@ CMacro ] let sha3_224_hash_len = 28ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.Hash.Incremental.Macros.fst" }
[ { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let sha3_384_hash_len =
48ul
false
EverCrypt.Hash.Incremental.Macros.fst
EverCrypt.Hash.Incremental.Macros.sha3_224_hash_len
val sha3_224_hash_len : FStar.UInt32.t
let sha3_224_hash_len = 28ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.Incremental.Macros.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 11, "start_col": 12, "start_line": 11 }
// Separate module because -no-prefix module EverCrypt.Hash.Incremental.Macros (* These definitions for the benefits of C clients. *) [@ CMacro ] let md5_hash_len = 16ul [@ CMacro ] let sha1_hash_len = 20ul [@ CMacro ] let sha2_224_hash_len = 28ul [@ CMacro ] let sha2_256_hash_len = 32ul [@ CMacro ] let sha2_384_hash_len = 48ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.Hash.Incremental.Macros.fst" }
[ { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let sha3_224_hash_len =
28ul
false
EverCrypt.Hash.Incremental.Macros.fst
EverCrypt.Hash.Incremental.Macros.blake2s_hash_len
val blake2s_hash_len : FStar.UInt32.t
let blake2s_hash_len = 32ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.Incremental.Macros.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 15, "start_col": 12, "start_line": 15 }
// Separate module because -no-prefix module EverCrypt.Hash.Incremental.Macros (* These definitions for the benefits of C clients. *) [@ CMacro ] let md5_hash_len = 16ul [@ CMacro ] let sha1_hash_len = 20ul [@ CMacro ] let sha2_224_hash_len = 28ul [@ CMacro ] let sha2_256_hash_len = 32ul [@ CMacro ] let sha2_384_hash_len = 48ul [@ CMacro ] let sha2_512_hash_len = 64ul [@ CMacro ] let sha3_224_hash_len = 28ul [@ CMacro ] let sha3_256_hash_len = 32ul [@ CMacro ] let sha3_384_hash_len = 48ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.Hash.Incremental.Macros.fst" }
[ { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let blake2s_hash_len =
32ul
false
EverCrypt.Hash.Incremental.Macros.fst
EverCrypt.Hash.Incremental.Macros.sha3_512_hash_len
val sha3_512_hash_len : FStar.UInt32.t
let sha3_512_hash_len = 64ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.Incremental.Macros.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 14, "start_col": 12, "start_line": 14 }
// Separate module because -no-prefix module EverCrypt.Hash.Incremental.Macros (* These definitions for the benefits of C clients. *) [@ CMacro ] let md5_hash_len = 16ul [@ CMacro ] let sha1_hash_len = 20ul [@ CMacro ] let sha2_224_hash_len = 28ul [@ CMacro ] let sha2_256_hash_len = 32ul [@ CMacro ] let sha2_384_hash_len = 48ul [@ CMacro ] let sha2_512_hash_len = 64ul [@ CMacro ] let sha3_224_hash_len = 28ul [@ CMacro ] let sha3_256_hash_len = 32ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.Hash.Incremental.Macros.fst" }
[ { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let sha3_512_hash_len =
64ul
false
EverCrypt.Hash.Incremental.Macros.fst
EverCrypt.Hash.Incremental.Macros.blake2b_hash_len
val blake2b_hash_len : FStar.UInt32.t
let blake2b_hash_len = 64ul
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.Incremental.Macros.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 16, "start_col": 12, "start_line": 16 }
// Separate module because -no-prefix module EverCrypt.Hash.Incremental.Macros (* These definitions for the benefits of C clients. *) [@ CMacro ] let md5_hash_len = 16ul [@ CMacro ] let sha1_hash_len = 20ul [@ CMacro ] let sha2_224_hash_len = 28ul [@ CMacro ] let sha2_256_hash_len = 32ul [@ CMacro ] let sha2_384_hash_len = 48ul [@ CMacro ] let sha2_512_hash_len = 64ul [@ CMacro ] let sha3_224_hash_len = 28ul [@ CMacro ] let sha3_256_hash_len = 32ul [@ CMacro ] let sha3_384_hash_len = 48ul [@ CMacro ] let sha3_512_hash_len = 64ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.Hash.Incremental.Macros.fst" }
[ { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Hash.Incremental", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let blake2b_hash_len =
64ul
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.synth_der_length_greater
val synth_der_length_greater (x: U8.t{U8.v x > 129 /\ U8.v x < 255}) (len: nat{len == U8.v x - 128}) (y: lint len {y >= pow2 (8 * (len - 1))}) : Tot (refine_with_tag tag_of_der_length x)
val synth_der_length_greater (x: U8.t{U8.v x > 129 /\ U8.v x < 255}) (len: nat{len == U8.v x - 128}) (y: lint len {y >= pow2 (8 * (len - 1))}) : Tot (refine_with_tag tag_of_der_length x)
let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 100, "start_col": 0, "start_line": 87 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t{FStar.UInt8.v x > 129 /\ FStar.UInt8.v x < 255} -> len: Prims.nat{len == FStar.UInt8.v x - 128} -> y: LowParse.Spec.DER.lint len {y >= Prims.pow2 (8 * (len - 1))} -> LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length x
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "FStar.UInt8.v", "Prims.op_LessThan", "Prims.nat", "Prims.eq2", "Prims.int", "Prims.op_Subtraction", "LowParse.Spec.DER.lint", "Prims.op_GreaterThanOrEqual", "Prims.pow2", "FStar.Mul.op_Star", "Prims.unit", "LowParse.Spec.DER.log256_unique", "FStar.Math.Lemmas.pow2_le_compat", "Prims._assert", "Prims.op_LessThanOrEqual", "LowParse.Spec.DER.der_length_max", "FStar.Pervasives.assert_norm", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.der_length_t", "LowParse.Spec.DER.tag_of_der_length" ]
[]
false
false
false
false
false
let synth_der_length_greater (x: U8.t{U8.v x > 129 /\ U8.v x < 255}) (len: nat{len == U8.v x - 128}) (y: lint len {y >= pow2 (8 * (len - 1))}) : Tot (refine_with_tag tag_of_der_length x) =
assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.serialize_der_length_payload_greater
val serialize_der_length_payload_greater : x: FStar.UInt8.t {Prims.op_Negation (FStar.UInt8.v x < 128 || x = 128uy || x = 255uy || x = 129uy)} -> len: Prims.nat{len == FStar.UInt8.v x - 128} -> LowParse.Spec.Base.serializer (LowParse.Spec.Combinators.parse_synth (LowParse.Spec.Combinators.parse_filter (LowParse.Spec.Combinators.parse_synth (LowParse.Spec.SeqBytes.Base.parse_seq_flbytes len ) (LowParse.Spec.DER.synth_be_int len)) (fun y -> y >= Prims.pow2 (8 * (len - 1)))) (LowParse.Spec.DER.synth_der_length_greater x len))
let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () )
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 7, "end_line": 523, "start_col": 0, "start_line": 498 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t {Prims.op_Negation (FStar.UInt8.v x < 128 || x = 128uy || x = 255uy || x = 129uy)} -> len: Prims.nat{len == FStar.UInt8.v x - 128} -> LowParse.Spec.Base.serializer (LowParse.Spec.Combinators.parse_synth (LowParse.Spec.Combinators.parse_filter (LowParse.Spec.Combinators.parse_synth (LowParse.Spec.SeqBytes.Base.parse_seq_flbytes len ) (LowParse.Spec.DER.synth_be_int len)) (fun y -> y >= Prims.pow2 (8 * (len - 1)))) (LowParse.Spec.DER.synth_der_length_greater x len))
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "Prims.b2t", "Prims.op_Negation", "Prims.op_BarBar", "Prims.op_LessThan", "FStar.UInt8.v", "Prims.op_Equality", "FStar.UInt8.__uint_to_t", "Prims.nat", "Prims.eq2", "Prims.int", "Prims.op_Subtraction", "LowParse.Spec.Combinators.serialize_synth", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Base.total_constant_size_parser_kind", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.DER.lint", "Prims.op_GreaterThanOrEqual", "Prims.pow2", "FStar.Mul.op_Star", "Prims.bool", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.der_length_t", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.Combinators.parse_synth", "FStar.Seq.Properties.lseq", "LowParse.Bytes.byte", "LowParse.Spec.SeqBytes.Base.parse_seq_flbytes", "LowParse.Spec.DER.synth_be_int", "LowParse.Spec.DER.synth_der_length_greater", "LowParse.Spec.Combinators.serialize_filter", "LowParse.Spec.SeqBytes.Base.serialize_seq_flbytes", "LowParse.Spec.DER.synth_be_int_recip", "LowParse.Spec.DER.synth_der_length_greater_recip", "LowParse.Spec.Base.serializer" ]
[]
false
false
false
false
false
let serialize_der_length_payload_greater (x: U8.t{not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy)}) (len: nat{len == U8.v x - 128}) =
(serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) ()) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater_recip x len) ())
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.tag_of_der_length_invalid
val tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False)
val tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False)
let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 52, "end_line": 448, "start_col": 0, "start_line": 438 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: LowParse.Spec.DER.der_length_t -> FStar.Pervasives.Lemma (requires (let y = FStar.UInt8.v (LowParse.Spec.DER.tag_of_der_length x) in y == 128 \/ y == 255)) (ensures Prims.l_False)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.op_LessThan", "Prims.bool", "LowParse.Math.pow2_lt_recip", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "LowParse.Spec.DER.der_length_max", "Prims.pow2", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Multiply", "LowParse.Spec.DER.log256", "Prims.l_or", "FStar.UInt.uint_t", "FStar.UInt8.v", "LowParse.Spec.DER.tag_of_der_length", "Prims.squash", "Prims.l_False", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) =
if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
false
FStar.UInt128.fsti
FStar.UInt128.op_Plus_Hat
val op_Plus_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
let op_Plus_Hat = add
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 142, "start_col": 32, "start_line": 142 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
Prims.Pure
[]
[]
[ "FStar.UInt128.add" ]
[]
false
false
false
false
false
let op_Plus_Hat =
add
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_der_length_payload
val parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x))
val parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x))
let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 133, "start_col": 0, "start_line": 102 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> LowParse.Spec.Base.parser (LowParse.Spec.DER.parse_der_length_payload_kind x) (LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length x)
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "Prims.op_LessThan", "LowParse.Spec.Base.weaken", "LowParse.Spec.DER.parse_der_length_payload_kind", "LowParse.Spec.Combinators.parse_ret_kind", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.der_length_t", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Spec.Combinators.parse_ret", "Prims.bool", "Prims.op_Equality", "FStar.UInt8.__uint_to_t", "LowParse.Spec.Combinators.fail_parser", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.Combinators.parse_filter_refine", "Prims.op_GreaterThanOrEqual", "FStar.UInt8.v", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.DER.synth_der_length_129", "LowParse.Spec.Base.total_constant_size_parser_kind", "LowParse.Spec.DER.lint", "Prims.pow2", "FStar.Mul.op_Star", "Prims.op_Subtraction", "FStar.Seq.Properties.lseq", "LowParse.Bytes.byte", "LowParse.Spec.SeqBytes.Base.parse_seq_flbytes", "LowParse.Spec.DER.synth_be_int", "LowParse.Spec.DER.synth_der_length_greater", "Prims.unit", "LowParse.Spec.DER.synth_be_int_injective", "Prims.nat", "LowParse.Spec.Base.parser", "Prims._assert", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.DER.der_length_max", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int" ]
[]
false
false
false
false
false
let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) =
assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let x':der_length_t = U8.v x in if x' < 128 then weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` (synth_der_length_129 x) ) else let len:nat = U8.v x - 128 in synth_be_int_injective len; weaken (parse_der_length_payload_kind x) ((((parse_seq_flbytes len) `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` (synth_der_length_greater x len))
false
FStar.UInt128.fsti
FStar.UInt128.op_Plus_Percent_Hat
val op_Plus_Percent_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
let op_Plus_Percent_Hat = add_mod
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 144, "start_col": 32, "start_line": 144 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
Prims.Pure
[]
[]
[ "FStar.UInt128.add_mod" ]
[]
false
false
false
false
false
let op_Plus_Percent_Hat =
add_mod
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.serialize_bounded_der_length_weak
val serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t{min <= max}) : Tot (serializer (parse_bounded_der_length_weak min max))
val serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t{min <= max}) : Tot (serializer (parse_bounded_der_length_weak min max))
let serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length_weak min max)) = serialize_synth _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) ()
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 6, "end_line": 705, "start_col": 0, "start_line": 693 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x)) end else if x = 128uy || x = 255uy then fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x) else if x = 129uy then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) ) end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? serialize_weaken (parse_der_length_payload_kind x) (serialize_der_length_payload_greater x len) end let serialize_der_length_weak : serializer parse_der_length_weak = serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x)) #push-options "--max_ifuel 6 --z3rlimit 64" let serialize_der_length_weak_unfold (y: der_length_t) : Lemma (let res = serialize serialize_der_length_weak y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = let x = tag_of_der_length y in serialize_u8_spec x; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy || x = 255uy then tag_of_der_length_invalid y else if x = 129uy then begin tag_of_der_length_eq_129 y; assert (U8.v (synth_der_length_129_recip x y) == y); let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))) y in serialize_synth_eq' #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) y s1 () (serialize serialize_u8 (synth_der_length_129_recip x y)) () ; serialize_u8_spec (U8.uint_to_t y); () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? assert ( serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y ); serialize_synth_eq' #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () y (serialize (serialize_der_length_payload_greater x len) y) (_ by (FStar.Tactics.trefl ())) (serialize (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (synth_der_length_greater_recip x len y) ) () ; serialize_synth_eq _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () (synth_der_length_greater_recip x len y); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); () end; () #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> LowParse.Spec.Base.serializer (LowParse.Spec.DER.parse_bounded_der_length_weak min max)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.Combinators.serialize_synth", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.DER.parse_der_length_weak_kind", "Prims.op_AmpAmp", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.DER.parse_der_length_weak", "Prims.bool", "LowParse.Spec.Combinators.serialize_filter", "LowParse.Spec.DER.serialize_der_length_weak", "LowParse.Spec.Base.serializer", "LowParse.Spec.DER.parse_bounded_der_length_weak" ]
[]
false
false
false
false
false
let serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t{min <= max}) : Tot (serializer (parse_bounded_der_length_weak min max)) =
serialize_synth _ (fun (y: der_length_t{min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max)) (fun (y: bounded_int min max) -> (y <: (y: der_length_t{min <= y && y <= max}))) ()
false
FStar.UInt128.fsti
FStar.UInt128.n
val n : Prims.int
let n = 128
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 11, "end_line": 25, "start_col": 0, "start_line": 25 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let n =
128
false
FStar.UInt128.fsti
FStar.UInt128.op_Subtraction_Percent_Hat
val op_Subtraction_Percent_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
let op_Subtraction_Percent_Hat = sub_mod
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 72, "end_line": 147, "start_col": 32, "start_line": 147 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add inline_for_extraction noextract let op_Plus_Question_Hat = add_underspec inline_for_extraction noextract let op_Plus_Percent_Hat = add_mod inline_for_extraction noextract let op_Subtraction_Hat = sub
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
Prims.Pure
[]
[]
[ "FStar.UInt128.sub_mod" ]
[]
false
false
false
false
false
let op_Subtraction_Percent_Hat =
sub_mod
false
FStar.UInt128.fsti
FStar.UInt128.op_Subtraction_Question_Hat
val op_Subtraction_Question_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
let op_Subtraction_Question_Hat = sub_underspec
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 79, "end_line": 146, "start_col": 32, "start_line": 146 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add inline_for_extraction noextract let op_Plus_Question_Hat = add_underspec inline_for_extraction noextract let op_Plus_Percent_Hat = add_mod
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
Prims.Pure
[]
[]
[ "FStar.UInt128.sub_underspec" ]
[]
false
false
false
false
false
let op_Subtraction_Question_Hat =
sub_underspec
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_der_length_payload32
val parse_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x))
val parse_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x))
let parse_der_length_payload32 x : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x)) = parse_der_length_payload x `parse_synth` synth_der_length_payload32 x
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 71, "end_line": 827, "start_col": 0, "start_line": 824 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x)) end else if x = 128uy || x = 255uy then fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x) else if x = 129uy then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) ) end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? serialize_weaken (parse_der_length_payload_kind x) (serialize_der_length_payload_greater x len) end let serialize_der_length_weak : serializer parse_der_length_weak = serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x)) #push-options "--max_ifuel 6 --z3rlimit 64" let serialize_der_length_weak_unfold (y: der_length_t) : Lemma (let res = serialize serialize_der_length_weak y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = let x = tag_of_der_length y in serialize_u8_spec x; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy || x = 255uy then tag_of_der_length_invalid y else if x = 129uy then begin tag_of_der_length_eq_129 y; assert (U8.v (synth_der_length_129_recip x y) == y); let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))) y in serialize_synth_eq' #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) y s1 () (serialize serialize_u8 (synth_der_length_129_recip x y)) () ; serialize_u8_spec (U8.uint_to_t y); () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? assert ( serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y ); serialize_synth_eq' #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () y (serialize (serialize_der_length_payload_greater x len) y) (_ by (FStar.Tactics.trefl ())) (serialize (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (synth_der_length_greater_recip x len y) ) () ; serialize_synth_eq _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () (synth_der_length_greater_recip x len y); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); () end; () #pop-options let serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length_weak min max)) = serialize_synth _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () let serialize_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length min max)) = Classical.forall_intro (parse_bounded_der_length_eq min max); serialize_ext _ (serialize_bounded_der_length_weak min max) (parse_bounded_der_length min max) let serialize_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (y: bounded_int min max) : Lemma (let res = serialize (serialize_bounded_der_length min max) y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = serialize_synth_eq _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () y; serialize_der_length_weak_unfold y (* 32-bit spec *) module U32 = FStar.UInt32 let der_length_payload_size_of_tag_inv32 (x: der_length_t) : Lemma (requires (x < 4294967296)) (ensures ( tag_of_der_length x == ( if x < 128 then U8.uint_to_t x else if x < 256 then 129uy else if x < 65536 then 130uy else if x < 16777216 then 131uy else 132uy ))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); if x < 256 then log256_unique x 1 else if x < 65536 then log256_unique x 2 else if x < 16777216 then log256_unique x 3 else log256_unique x 4 let synth_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) (y: refine_with_tag tag_of_der_length x) : GTot (refine_with_tag tag_of_der_length32 x) = let _ = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end in U32.uint_to_t y let synth_der_length_payload32_injective (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Lemma (synth_injective (synth_der_length_payload32 x)) [SMTPat (synth_injective (synth_der_length_payload32 x))] = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) -> if y1 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y1) == 128 + log256 y1) end; if y2 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y2) == 128 + log256 y2) end )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t{LowParse.Spec.DER.der_length_payload_size_of_tag x <= 4} -> LowParse.Spec.Base.parser (LowParse.Spec.DER.parse_der_length_payload_kind x) (LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length32 x)
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.DER.der_length_payload_size_of_tag", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.DER.parse_der_length_payload_kind", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.der_length_t", "LowParse.Spec.DER.tag_of_der_length", "FStar.UInt32.t", "LowParse.Spec.DER.tag_of_der_length32", "LowParse.Spec.DER.parse_der_length_payload", "LowParse.Spec.DER.synth_der_length_payload32", "LowParse.Spec.Base.parser" ]
[]
false
false
false
false
false
let parse_der_length_payload32 x : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x)) =
(parse_der_length_payload x) `parse_synth` (synth_der_length_payload32 x)
false
FStar.UInt128.fsti
FStar.UInt128.op_Plus_Question_Hat
val op_Plus_Question_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
let op_Plus_Question_Hat = add_underspec
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 72, "end_line": 143, "start_col": 32, "start_line": 143 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
Prims.Pure
[]
[]
[ "FStar.UInt128.add_underspec" ]
[]
false
false
false
false
false
let op_Plus_Question_Hat =
add_underspec
false
FStar.UInt128.fsti
FStar.UInt128.op_Subtraction_Hat
val op_Subtraction_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
let op_Subtraction_Hat = sub
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 145, "start_col": 32, "start_line": 145 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add inline_for_extraction noextract let op_Plus_Question_Hat = add_underspec
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
Prims.Pure
[]
[]
[ "FStar.UInt128.sub" ]
[]
false
false
false
false
false
let op_Subtraction_Hat =
sub
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.tag_of_der_length_lt_128
val tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x)))
val tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x)))
let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 52, "end_line": 436, "start_col": 0, "start_line": 426 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: LowParse.Spec.DER.der_length_t -> FStar.Pervasives.Lemma (requires FStar.UInt8.v (LowParse.Spec.DER.tag_of_der_length x) < 128) (ensures x == FStar.UInt8.v (LowParse.Spec.DER.tag_of_der_length x))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.op_LessThan", "Prims.bool", "LowParse.Math.pow2_lt_recip", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "LowParse.Spec.DER.der_length_max", "Prims.pow2", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Multiply", "LowParse.Spec.DER.log256", "FStar.UInt8.v", "LowParse.Spec.DER.tag_of_der_length", "Prims.squash", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt8.n", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) =
if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
false
FStar.UInt128.fsti
FStar.UInt128.op_Amp_Hat
val op_Amp_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
let op_Amp_Hat = logand
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 148, "start_col": 32, "start_line": 148 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add inline_for_extraction noextract let op_Plus_Question_Hat = add_underspec inline_for_extraction noextract let op_Plus_Percent_Hat = add_mod inline_for_extraction noextract let op_Subtraction_Hat = sub inline_for_extraction noextract let op_Subtraction_Question_Hat = sub_underspec
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
Prims.Pure
[]
[]
[ "FStar.UInt128.logand" ]
[]
false
false
false
false
false
let op_Amp_Hat =
logand
false
FStar.UInt128.fsti
FStar.UInt128.op_Bar_Hat
val op_Bar_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
let op_Bar_Hat = logor
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 150, "start_col": 32, "start_line": 150 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add inline_for_extraction noextract let op_Plus_Question_Hat = add_underspec inline_for_extraction noextract let op_Plus_Percent_Hat = add_mod inline_for_extraction noextract let op_Subtraction_Hat = sub inline_for_extraction noextract let op_Subtraction_Question_Hat = sub_underspec inline_for_extraction noextract let op_Subtraction_Percent_Hat = sub_mod inline_for_extraction noextract let op_Amp_Hat = logand
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
Prims.Pure
[]
[]
[ "FStar.UInt128.logor" ]
[]
false
false
false
false
false
let op_Bar_Hat =
logor
false
FStar.UInt128.fsti
FStar.UInt128.op_Less_Less_Hat
val op_Less_Less_Hat : a: FStar.UInt128.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt128.t
let op_Less_Less_Hat = shift_left
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 151, "start_col": 32, "start_line": 151 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add inline_for_extraction noextract let op_Plus_Question_Hat = add_underspec inline_for_extraction noextract let op_Plus_Percent_Hat = add_mod inline_for_extraction noextract let op_Subtraction_Hat = sub inline_for_extraction noextract let op_Subtraction_Question_Hat = sub_underspec inline_for_extraction noextract let op_Subtraction_Percent_Hat = sub_mod inline_for_extraction noextract let op_Amp_Hat = logand inline_for_extraction noextract let op_Hat_Hat = logxor
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt128.t
Prims.Pure
[]
[]
[ "FStar.UInt128.shift_left" ]
[]
false
false
false
false
false
let op_Less_Less_Hat =
shift_left
false
FStar.UInt128.fsti
FStar.UInt128.op_Hat_Hat
val op_Hat_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
let op_Hat_Hat = logxor
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 149, "start_col": 32, "start_line": 149 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add inline_for_extraction noextract let op_Plus_Question_Hat = add_underspec inline_for_extraction noextract let op_Plus_Percent_Hat = add_mod inline_for_extraction noextract let op_Subtraction_Hat = sub inline_for_extraction noextract let op_Subtraction_Question_Hat = sub_underspec inline_for_extraction noextract let op_Subtraction_Percent_Hat = sub_mod
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
Prims.Pure
[]
[]
[ "FStar.UInt128.logxor" ]
[]
false
false
false
false
false
let op_Hat_Hat =
logxor
false
FStar.UInt128.fsti
FStar.UInt128.op_Less_Hat
val op_Less_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
let op_Less_Hat = lt
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 155, "start_col": 32, "start_line": 155 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add inline_for_extraction noextract let op_Plus_Question_Hat = add_underspec inline_for_extraction noextract let op_Plus_Percent_Hat = add_mod inline_for_extraction noextract let op_Subtraction_Hat = sub inline_for_extraction noextract let op_Subtraction_Question_Hat = sub_underspec inline_for_extraction noextract let op_Subtraction_Percent_Hat = sub_mod inline_for_extraction noextract let op_Amp_Hat = logand inline_for_extraction noextract let op_Hat_Hat = logxor inline_for_extraction noextract let op_Bar_Hat = logor inline_for_extraction noextract let op_Less_Less_Hat = shift_left inline_for_extraction noextract let op_Greater_Greater_Hat = shift_right inline_for_extraction noextract let op_Equals_Hat = eq
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
Prims.Pure
[]
[]
[ "FStar.UInt128.lt" ]
[]
false
false
false
false
false
let op_Less_Hat =
lt
false
FStar.UInt128.fsti
FStar.UInt128.op_Greater_Hat
val op_Greater_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
let op_Greater_Hat = gt
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 154, "start_col": 32, "start_line": 154 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add inline_for_extraction noextract let op_Plus_Question_Hat = add_underspec inline_for_extraction noextract let op_Plus_Percent_Hat = add_mod inline_for_extraction noextract let op_Subtraction_Hat = sub inline_for_extraction noextract let op_Subtraction_Question_Hat = sub_underspec inline_for_extraction noextract let op_Subtraction_Percent_Hat = sub_mod inline_for_extraction noextract let op_Amp_Hat = logand inline_for_extraction noextract let op_Hat_Hat = logxor inline_for_extraction noextract let op_Bar_Hat = logor inline_for_extraction noextract let op_Less_Less_Hat = shift_left inline_for_extraction noextract let op_Greater_Greater_Hat = shift_right
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
Prims.Pure
[]
[]
[ "FStar.UInt128.gt" ]
[]
false
false
false
false
false
let op_Greater_Hat =
gt
false
FStar.UInt128.fsti
FStar.UInt128.op_Equals_Hat
val op_Equals_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
let op_Equals_Hat = eq
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 153, "start_col": 32, "start_line": 153 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add inline_for_extraction noextract let op_Plus_Question_Hat = add_underspec inline_for_extraction noextract let op_Plus_Percent_Hat = add_mod inline_for_extraction noextract let op_Subtraction_Hat = sub inline_for_extraction noextract let op_Subtraction_Question_Hat = sub_underspec inline_for_extraction noextract let op_Subtraction_Percent_Hat = sub_mod inline_for_extraction noextract let op_Amp_Hat = logand inline_for_extraction noextract let op_Hat_Hat = logxor inline_for_extraction noextract let op_Bar_Hat = logor inline_for_extraction noextract let op_Less_Less_Hat = shift_left
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
Prims.Pure
[]
[]
[ "FStar.UInt128.eq" ]
[]
false
false
false
false
false
let op_Equals_Hat =
eq
false
FStar.UInt128.fsti
FStar.UInt128.op_Greater_Greater_Hat
val op_Greater_Greater_Hat : a: FStar.UInt128.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt128.t
let op_Greater_Greater_Hat = shift_right
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 72, "end_line": 152, "start_col": 32, "start_line": 152 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add inline_for_extraction noextract let op_Plus_Question_Hat = add_underspec inline_for_extraction noextract let op_Plus_Percent_Hat = add_mod inline_for_extraction noextract let op_Subtraction_Hat = sub inline_for_extraction noextract let op_Subtraction_Question_Hat = sub_underspec inline_for_extraction noextract let op_Subtraction_Percent_Hat = sub_mod inline_for_extraction noextract let op_Amp_Hat = logand inline_for_extraction noextract let op_Hat_Hat = logxor inline_for_extraction noextract let op_Bar_Hat = logor
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt128.t
Prims.Pure
[]
[]
[ "FStar.UInt128.shift_right" ]
[]
false
false
false
false
false
let op_Greater_Greater_Hat =
shift_right
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.be_int_of_bounded_integer_injective
val be_int_of_bounded_integer_injective (len: integer_size) : Lemma (synth_injective (be_int_of_bounded_integer len)) [SMTPat (synth_injective (be_int_of_bounded_integer len))]
val be_int_of_bounded_integer_injective (len: integer_size) : Lemma (synth_injective (be_int_of_bounded_integer len)) [SMTPat (synth_injective (be_int_of_bounded_integer len))]
let be_int_of_bounded_integer_injective (len: integer_size) : Lemma (synth_injective (be_int_of_bounded_integer len)) [SMTPat (synth_injective (be_int_of_bounded_integer len))] // FIXME: WHY WHY WHY does this pattern NEVER trigger? = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 42, "end_line": 849, "start_col": 0, "start_line": 840 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x)) end else if x = 128uy || x = 255uy then fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x) else if x = 129uy then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) ) end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? serialize_weaken (parse_der_length_payload_kind x) (serialize_der_length_payload_greater x len) end let serialize_der_length_weak : serializer parse_der_length_weak = serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x)) #push-options "--max_ifuel 6 --z3rlimit 64" let serialize_der_length_weak_unfold (y: der_length_t) : Lemma (let res = serialize serialize_der_length_weak y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = let x = tag_of_der_length y in serialize_u8_spec x; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy || x = 255uy then tag_of_der_length_invalid y else if x = 129uy then begin tag_of_der_length_eq_129 y; assert (U8.v (synth_der_length_129_recip x y) == y); let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))) y in serialize_synth_eq' #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) y s1 () (serialize serialize_u8 (synth_der_length_129_recip x y)) () ; serialize_u8_spec (U8.uint_to_t y); () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? assert ( serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y ); serialize_synth_eq' #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () y (serialize (serialize_der_length_payload_greater x len) y) (_ by (FStar.Tactics.trefl ())) (serialize (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (synth_der_length_greater_recip x len y) ) () ; serialize_synth_eq _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () (synth_der_length_greater_recip x len y); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); () end; () #pop-options let serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length_weak min max)) = serialize_synth _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () let serialize_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length min max)) = Classical.forall_intro (parse_bounded_der_length_eq min max); serialize_ext _ (serialize_bounded_der_length_weak min max) (parse_bounded_der_length min max) let serialize_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (y: bounded_int min max) : Lemma (let res = serialize (serialize_bounded_der_length min max) y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = serialize_synth_eq _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () y; serialize_der_length_weak_unfold y (* 32-bit spec *) module U32 = FStar.UInt32 let der_length_payload_size_of_tag_inv32 (x: der_length_t) : Lemma (requires (x < 4294967296)) (ensures ( tag_of_der_length x == ( if x < 128 then U8.uint_to_t x else if x < 256 then 129uy else if x < 65536 then 130uy else if x < 16777216 then 131uy else 132uy ))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); if x < 256 then log256_unique x 1 else if x < 65536 then log256_unique x 2 else if x < 16777216 then log256_unique x 3 else log256_unique x 4 let synth_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) (y: refine_with_tag tag_of_der_length x) : GTot (refine_with_tag tag_of_der_length32 x) = let _ = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end in U32.uint_to_t y let synth_der_length_payload32_injective (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Lemma (synth_injective (synth_der_length_payload32 x)) [SMTPat (synth_injective (synth_der_length_payload32 x))] = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) -> if y1 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y1) == 128 + log256 y1) end; if y2 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y2) == 128 + log256 y2) end ) let parse_der_length_payload32 x : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x)) = parse_der_length_payload x `parse_synth` synth_der_length_payload32 x let be_int_of_bounded_integer (len: integer_size) (x: nat { x < pow2 (8 * len) } ) : GTot (bounded_integer len) = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); U32.uint_to_t x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: LowParse.Spec.BoundedInt.integer_size -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Combinators.synth_injective (LowParse.Spec.DER.be_int_of_bounded_integer len)) [ SMTPat (LowParse.Spec.Combinators.synth_injective (LowParse.Spec.DER.be_int_of_bounded_integer len)) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.BoundedInt.integer_size", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.pow2", "FStar.Mul.op_Star", "Prims.unit", "LowParse.Spec.BoundedInt.integer_size_values", "Prims.l_True", "Prims.squash", "LowParse.Spec.Combinators.synth_injective", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "LowParse.Spec.BoundedInt.bounded_integer", "LowParse.Spec.DER.be_int_of_bounded_integer", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let be_int_of_bounded_integer_injective (len: integer_size) : Lemma (synth_injective (be_int_of_bounded_integer len)) [SMTPat (synth_injective (be_int_of_bounded_integer len))] =
integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296)
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.synth_bounded_der_length32
val synth_bounded_der_length32 (min: der_length_t) (max: der_length_t{min <= max /\ max < 4294967296}) (x: bounded_int min max) : Tot (bounded_int32 min max)
val synth_bounded_der_length32 (min: der_length_t) (max: der_length_t{min <= max /\ max < 4294967296}) (x: bounded_int min max) : Tot (bounded_int32 min max)
let synth_bounded_der_length32 (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) (x: bounded_int min max) : Tot (bounded_int32 min max) = U32.uint_to_t x
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 17, "end_line": 927, "start_col": 0, "start_line": 922 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x)) end else if x = 128uy || x = 255uy then fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x) else if x = 129uy then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) ) end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? serialize_weaken (parse_der_length_payload_kind x) (serialize_der_length_payload_greater x len) end let serialize_der_length_weak : serializer parse_der_length_weak = serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x)) #push-options "--max_ifuel 6 --z3rlimit 64" let serialize_der_length_weak_unfold (y: der_length_t) : Lemma (let res = serialize serialize_der_length_weak y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = let x = tag_of_der_length y in serialize_u8_spec x; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy || x = 255uy then tag_of_der_length_invalid y else if x = 129uy then begin tag_of_der_length_eq_129 y; assert (U8.v (synth_der_length_129_recip x y) == y); let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))) y in serialize_synth_eq' #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) y s1 () (serialize serialize_u8 (synth_der_length_129_recip x y)) () ; serialize_u8_spec (U8.uint_to_t y); () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? assert ( serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y ); serialize_synth_eq' #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () y (serialize (serialize_der_length_payload_greater x len) y) (_ by (FStar.Tactics.trefl ())) (serialize (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (synth_der_length_greater_recip x len y) ) () ; serialize_synth_eq _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () (synth_der_length_greater_recip x len y); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); () end; () #pop-options let serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length_weak min max)) = serialize_synth _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () let serialize_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length min max)) = Classical.forall_intro (parse_bounded_der_length_eq min max); serialize_ext _ (serialize_bounded_der_length_weak min max) (parse_bounded_der_length min max) let serialize_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (y: bounded_int min max) : Lemma (let res = serialize (serialize_bounded_der_length min max) y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = serialize_synth_eq _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () y; serialize_der_length_weak_unfold y (* 32-bit spec *) module U32 = FStar.UInt32 let der_length_payload_size_of_tag_inv32 (x: der_length_t) : Lemma (requires (x < 4294967296)) (ensures ( tag_of_der_length x == ( if x < 128 then U8.uint_to_t x else if x < 256 then 129uy else if x < 65536 then 130uy else if x < 16777216 then 131uy else 132uy ))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); if x < 256 then log256_unique x 1 else if x < 65536 then log256_unique x 2 else if x < 16777216 then log256_unique x 3 else log256_unique x 4 let synth_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) (y: refine_with_tag tag_of_der_length x) : GTot (refine_with_tag tag_of_der_length32 x) = let _ = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end in U32.uint_to_t y let synth_der_length_payload32_injective (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Lemma (synth_injective (synth_der_length_payload32 x)) [SMTPat (synth_injective (synth_der_length_payload32 x))] = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) -> if y1 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y1) == 128 + log256 y1) end; if y2 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y2) == 128 + log256 y2) end ) let parse_der_length_payload32 x : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x)) = parse_der_length_payload x `parse_synth` synth_der_length_payload32 x let be_int_of_bounded_integer (len: integer_size) (x: nat { x < pow2 (8 * len) } ) : GTot (bounded_integer len) = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); U32.uint_to_t x let be_int_of_bounded_integer_injective (len: integer_size) : Lemma (synth_injective (be_int_of_bounded_integer len)) [SMTPat (synth_injective (be_int_of_bounded_integer len))] // FIXME: WHY WHY WHY does this pattern NEVER trigger? = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) #push-options "--max_ifuel 4 --z3rlimit 16" let parse_seq_flbytes_synth_be_int_eq (len: integer_size) (input: bytes) : Lemma ( let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse ( parse_synth #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len) ) (be_int_of_bounded_integer len) ) input == parse (parse_bounded_integer len) input) = let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse_synth_eq (parse_seq_flbytes len `parse_synth` synth_be_int len) (be_int_of_bounded_integer len) input; parse_synth_eq (parse_seq_flbytes len) (synth_be_int len) input; parser_kind_prop_equiv (parse_bounded_integer_kind len) (parse_bounded_integer len); parse_bounded_integer_spec len input let parse_der_length_payload32_unfold x input = parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 (8 * 1) == 256); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in begin match parse (parse_der_length_payload x) input with | None -> () | Some (y, _) -> if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end end; parse_der_length_payload_unfold x input; if U8.v x < 128 then () // tag_of_der_length (U8.v x) == x /\ y == Some (Cast.uint8_to_uint32 x, 0) else if x = 128uy || x = 255uy then () // y == None else if x = 129uy then () else begin let len : nat = U8.v x - 128 in assert (2 <= len /\ len <= 4); let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse_seq_flbytes_synth_be_int_eq len input; integer_size_values len; parse_synth_eq #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len)) (be_int_of_bounded_integer len) input end #pop-options let log256_eq x = log256_unique x (log256' x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max /\ max < 4294967296} -> x: LowParse.Spec.DER.bounded_int min max -> LowParse.Spec.BoundedInt.bounded_int32 min max
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.Spec.DER.bounded_int", "FStar.UInt32.uint_to_t", "LowParse.Spec.BoundedInt.bounded_int32" ]
[]
false
false
false
false
false
let synth_bounded_der_length32 (min: der_length_t) (max: der_length_t{min <= max /\ max < 4294967296}) (x: bounded_int min max) : Tot (bounded_int32 min max) =
U32.uint_to_t x
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.be_int_of_bounded_integer
val be_int_of_bounded_integer (len: integer_size) (x: nat{x < pow2 (8 * len)}) : GTot (bounded_integer len)
val be_int_of_bounded_integer (len: integer_size) (x: nat{x < pow2 (8 * len)}) : GTot (bounded_integer len)
let be_int_of_bounded_integer (len: integer_size) (x: nat { x < pow2 (8 * len) } ) : GTot (bounded_integer len) = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); U32.uint_to_t x
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 17, "end_line": 838, "start_col": 0, "start_line": 829 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x)) end else if x = 128uy || x = 255uy then fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x) else if x = 129uy then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) ) end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? serialize_weaken (parse_der_length_payload_kind x) (serialize_der_length_payload_greater x len) end let serialize_der_length_weak : serializer parse_der_length_weak = serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x)) #push-options "--max_ifuel 6 --z3rlimit 64" let serialize_der_length_weak_unfold (y: der_length_t) : Lemma (let res = serialize serialize_der_length_weak y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = let x = tag_of_der_length y in serialize_u8_spec x; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy || x = 255uy then tag_of_der_length_invalid y else if x = 129uy then begin tag_of_der_length_eq_129 y; assert (U8.v (synth_der_length_129_recip x y) == y); let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))) y in serialize_synth_eq' #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) y s1 () (serialize serialize_u8 (synth_der_length_129_recip x y)) () ; serialize_u8_spec (U8.uint_to_t y); () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? assert ( serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y ); serialize_synth_eq' #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () y (serialize (serialize_der_length_payload_greater x len) y) (_ by (FStar.Tactics.trefl ())) (serialize (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (synth_der_length_greater_recip x len y) ) () ; serialize_synth_eq _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () (synth_der_length_greater_recip x len y); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); () end; () #pop-options let serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length_weak min max)) = serialize_synth _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () let serialize_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length min max)) = Classical.forall_intro (parse_bounded_der_length_eq min max); serialize_ext _ (serialize_bounded_der_length_weak min max) (parse_bounded_der_length min max) let serialize_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (y: bounded_int min max) : Lemma (let res = serialize (serialize_bounded_der_length min max) y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = serialize_synth_eq _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () y; serialize_der_length_weak_unfold y (* 32-bit spec *) module U32 = FStar.UInt32 let der_length_payload_size_of_tag_inv32 (x: der_length_t) : Lemma (requires (x < 4294967296)) (ensures ( tag_of_der_length x == ( if x < 128 then U8.uint_to_t x else if x < 256 then 129uy else if x < 65536 then 130uy else if x < 16777216 then 131uy else 132uy ))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); if x < 256 then log256_unique x 1 else if x < 65536 then log256_unique x 2 else if x < 16777216 then log256_unique x 3 else log256_unique x 4 let synth_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) (y: refine_with_tag tag_of_der_length x) : GTot (refine_with_tag tag_of_der_length32 x) = let _ = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end in U32.uint_to_t y let synth_der_length_payload32_injective (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Lemma (synth_injective (synth_der_length_payload32 x)) [SMTPat (synth_injective (synth_der_length_payload32 x))] = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) -> if y1 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y1) == 128 + log256 y1) end; if y2 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y2) == 128 + log256 y2) end ) let parse_der_length_payload32 x : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x)) = parse_der_length_payload x `parse_synth` synth_der_length_payload32 x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: LowParse.Spec.BoundedInt.integer_size -> x: Prims.nat{x < Prims.pow2 (8 * len)} -> Prims.GTot (LowParse.Spec.BoundedInt.bounded_integer len)
Prims.GTot
[ "sometrivial" ]
[]
[ "LowParse.Spec.BoundedInt.integer_size", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "FStar.UInt32.uint_to_t", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "LowParse.Spec.BoundedInt.integer_size_values", "LowParse.Spec.BoundedInt.bounded_integer" ]
[]
false
false
false
false
false
let be_int_of_bounded_integer (len: integer_size) (x: nat{x < pow2 (8 * len)}) : GTot (bounded_integer len) =
integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); U32.uint_to_t x
false
Pulse.Typing.Metatheory.Base.fsti
Pulse.Typing.Metatheory.Base.renaming
val renaming : x: Pulse.Syntax.Base.var -> y: Pulse.Syntax.Base.var -> Prims.list Pulse.Syntax.Naming.subst_elt
let renaming x y = [NT x (tm_var {nm_index=y; nm_ppname=ppname_default})]
{ "file_name": "lib/steel/pulse/Pulse.Typing.Metatheory.Base.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 73, "end_line": 85, "start_col": 0, "start_line": 85 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Typing.Metatheory.Base open Pulse.Syntax open Pulse.Syntax.Naming open Pulse.Typing module RU = Pulse.RuntimeUtils module T = FStar.Tactics.V2 val admit_comp_typing (g:env) (c:comp_st) : comp_typing_u g c module RT = FStar.Reflection.Typing let rt_equiv_typing (#g:_) (#t0 #t1:_) (d:RT.equiv g t0 t1) (#k:_) (d1:Ghost.erased (RT.tot_typing g t0 k)) : Ghost.erased (RT.tot_typing g t1 k) = admit() val st_typing_correctness_ctot (#g:env) (#t:st_term) (#c:comp{C_Tot? c}) (_:st_typing g t c) : (u:Ghost.erased universe & universe_of g (comp_res c) u) let inames_of_comp_st (c:comp_st) = match c with | C_STAtomic _ _ _ -> comp_inames c | _ -> tm_emp_inames let iname_typing (g:env) (c:comp_st) = tot_typing g (inames_of_comp_st c) tm_inames val st_typing_correctness (#g:env) (#t:st_term) (#c:comp_st) (d:st_typing g t c) : comp_typing_u g c val comp_typing_inversion (#g:env) (#c:comp_st) (ct:comp_typing_u g c) : st_comp_typing g (st_comp_of_comp c) & iname_typing g c val st_comp_typing_inversion_cofinite (#g:env) (#st:_) (ct:st_comp_typing g st) : (universe_of g st.res st.u & tot_typing g st.pre tm_vprop & (x:var{fresh_wrt x g (freevars st.post)} -> //this part is tricky, to get the quantification on x tot_typing (push_binding g x ppname_default st.res) (open_term st.post x) tm_vprop)) val st_comp_typing_inversion (#g:env) (#st:_) (ct:st_comp_typing g st) : (universe_of g st.res st.u & tot_typing g st.pre tm_vprop & x:var{fresh_wrt x g (freevars st.post)} & tot_typing (push_binding g x ppname_default st.res) (open_term st.post x) tm_vprop) val tm_exists_inversion (#g:env) (#u:universe) (#ty:term) (#p:term) (_:tot_typing g (tm_exists_sl u (as_binder ty) p) tm_vprop) (x:var { fresh_wrt x g (freevars p) } ) : universe_of g ty u & tot_typing (push_binding g x ppname_default ty) p tm_vprop val pure_typing_inversion (#g:env) (#p:term) (_:tot_typing g (tm_pure p) tm_vprop) : tot_typing g p (tm_fstar FStar.Reflection.Typing.tm_prop Range.range_0) module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module C = FStar.Stubs.TypeChecker.Core open FStar.Ghost val typing_correctness (#g:R.env) (#t:R.term) (#ty:R.typ) (#eff:_) (_:erased (RT.typing g t (eff, ty))) : erased (u:R.universe & RT.typing g ty (C.E_Total, RT.tm_type u))
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.Naming.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.TypeChecker.Core.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Range.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Typing.Metatheory.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.Stubs.TypeChecker.Core", "short_module": "C" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Naming", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Naming", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Pulse.Syntax.Base.var -> y: Pulse.Syntax.Base.var -> Prims.list Pulse.Syntax.Naming.subst_elt
Prims.Tot
[ "total" ]
[]
[ "Pulse.Syntax.Base.var", "Prims.Cons", "Pulse.Syntax.Naming.subst_elt", "Pulse.Syntax.Naming.NT", "Pulse.Syntax.Pure.tm_var", "Pulse.Syntax.Base.Mknm", "Pulse.Syntax.Base.ppname_default", "Prims.Nil", "Prims.list" ]
[]
false
false
false
true
false
let renaming x y =
[NT x (tm_var ({ nm_index = y; nm_ppname = ppname_default }))]
false
FStar.UInt128.fsti
FStar.UInt128.op_Greater_Equals_Hat
val op_Greater_Equals_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
let op_Greater_Equals_Hat = gte
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 156, "start_col": 32, "start_line": 156 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add inline_for_extraction noextract let op_Plus_Question_Hat = add_underspec inline_for_extraction noextract let op_Plus_Percent_Hat = add_mod inline_for_extraction noextract let op_Subtraction_Hat = sub inline_for_extraction noextract let op_Subtraction_Question_Hat = sub_underspec inline_for_extraction noextract let op_Subtraction_Percent_Hat = sub_mod inline_for_extraction noextract let op_Amp_Hat = logand inline_for_extraction noextract let op_Hat_Hat = logxor inline_for_extraction noextract let op_Bar_Hat = logor inline_for_extraction noextract let op_Less_Less_Hat = shift_left inline_for_extraction noextract let op_Greater_Greater_Hat = shift_right inline_for_extraction noextract let op_Equals_Hat = eq inline_for_extraction noextract let op_Greater_Hat = gt
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
Prims.Pure
[]
[]
[ "FStar.UInt128.gte" ]
[]
false
false
false
false
false
let op_Greater_Equals_Hat =
gte
false
FStar.UInt128.fsti
FStar.UInt128.op_Less_Equals_Hat
val op_Less_Equals_Hat : a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
let op_Less_Equals_Hat = lte
{ "file_name": "ulib/FStar.UInt128.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 157, "start_col": 32, "start_line": 157 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.UInt open FStar.Mul module U32 = FStar.UInt32 module U64 = FStar.UInt64 noextract let n = 128 val t: (x:Type0{hasEq x}) [@@ noextract_to "krml"] val v (x:t) : Tot (uint_t n) [@@ noextract_to "krml"] val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val add: a:t -> b:t -> Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) (* Subtraction primitives *) val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) (* Bitwise operators *) val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) val logxor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logxor (v a) (v b))) val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) //This private primitive is used internally by the //compiler to translate bounded integer constants //with a desugaring-time check of the size of the number, //rather than an expensive verifiation check. //Since it is marked private, client programs cannot call it directly //Since it is marked unfold, it eagerly reduces, //eliminating the verification overhead of the wrapper private unfold let __uint_to_t (x:int) : Tot t = assume (fits x 128); uint_to_t x (* Shift operators *) val shift_left: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) (* Comparison operators *) val eq (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == eq #n (v a) (v b))) val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) (* Casts *) val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} (* To input / output constants *) (* TODO: assume these without implementations *) //val to_string: t -> Tot string //val of_string: string -> Tot t (* Infix notations *) inline_for_extraction noextract let op_Plus_Hat = add inline_for_extraction noextract let op_Plus_Question_Hat = add_underspec inline_for_extraction noextract let op_Plus_Percent_Hat = add_mod inline_for_extraction noextract let op_Subtraction_Hat = sub inline_for_extraction noextract let op_Subtraction_Question_Hat = sub_underspec inline_for_extraction noextract let op_Subtraction_Percent_Hat = sub_mod inline_for_extraction noextract let op_Amp_Hat = logand inline_for_extraction noextract let op_Hat_Hat = logxor inline_for_extraction noextract let op_Bar_Hat = logor inline_for_extraction noextract let op_Less_Less_Hat = shift_left inline_for_extraction noextract let op_Greater_Greater_Hat = shift_right inline_for_extraction noextract let op_Equals_Hat = eq inline_for_extraction noextract let op_Greater_Hat = gt inline_for_extraction noextract let op_Less_Hat = lt
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt128.fsti" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
Prims.Pure
[]
[]
[ "FStar.UInt128.lte" ]
[]
false
false
false
false
false
let op_Less_Equals_Hat =
lte
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.serialize_bounded_der_length_unfold
val serialize_bounded_der_length_unfold (min: der_length_t) (max: der_length_t{min <= max}) (y: bounded_int min max) : Lemma (let res = serialize (serialize_bounded_der_length min max) y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` (Seq.create 1 (U8.uint_to_t y))) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` (E.n_to_be len y)))
val serialize_bounded_der_length_unfold (min: der_length_t) (max: der_length_t{min <= max}) (y: bounded_int min max) : Lemma (let res = serialize (serialize_bounded_der_length min max) y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` (Seq.create 1 (U8.uint_to_t y))) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` (E.n_to_be len y)))
let serialize_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (y: bounded_int min max) : Lemma (let res = serialize (serialize_bounded_der_length min max) y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = serialize_synth_eq _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () y; serialize_der_length_weak_unfold y
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 36, "end_line": 743, "start_col": 0, "start_line": 717 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x)) end else if x = 128uy || x = 255uy then fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x) else if x = 129uy then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) ) end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? serialize_weaken (parse_der_length_payload_kind x) (serialize_der_length_payload_greater x len) end let serialize_der_length_weak : serializer parse_der_length_weak = serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x)) #push-options "--max_ifuel 6 --z3rlimit 64" let serialize_der_length_weak_unfold (y: der_length_t) : Lemma (let res = serialize serialize_der_length_weak y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = let x = tag_of_der_length y in serialize_u8_spec x; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy || x = 255uy then tag_of_der_length_invalid y else if x = 129uy then begin tag_of_der_length_eq_129 y; assert (U8.v (synth_der_length_129_recip x y) == y); let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))) y in serialize_synth_eq' #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) y s1 () (serialize serialize_u8 (synth_der_length_129_recip x y)) () ; serialize_u8_spec (U8.uint_to_t y); () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? assert ( serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y ); serialize_synth_eq' #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () y (serialize (serialize_der_length_payload_greater x len) y) (_ by (FStar.Tactics.trefl ())) (serialize (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (synth_der_length_greater_recip x len y) ) () ; serialize_synth_eq _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () (synth_der_length_greater_recip x len y); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); () end; () #pop-options let serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length_weak min max)) = serialize_synth _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () let serialize_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length min max)) = Classical.forall_intro (parse_bounded_der_length_eq min max); serialize_ext _ (serialize_bounded_der_length_weak min max) (parse_bounded_der_length min max)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max} -> y: LowParse.Spec.DER.bounded_int min max -> FStar.Pervasives.Lemma (ensures (let res = LowParse.Spec.Base.serialize (LowParse.Spec.DER.serialize_bounded_der_length min max) y in let x = LowParse.Spec.DER.tag_of_der_length y in let s1 = FStar.Seq.Base.create 1 x in (match FStar.UInt8.lt x 128uy with | true -> FStar.Seq.Base.equal res s1 | _ -> (match x = 129uy with | true -> y <= 255 /\ FStar.Seq.Base.equal res (FStar.Seq.Base.append s1 (FStar.Seq.Base.create 1 (FStar.UInt8.uint_to_t y))) | _ -> let len = LowParse.Spec.DER.log256 y in FStar.Seq.Base.equal res (FStar.Seq.Base.append s1 (FStar.Endianness.n_to_be len y)) ) <: Type0) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.DER.serialize_der_length_weak_unfold", "Prims.unit", "LowParse.Spec.Combinators.serialize_synth_eq", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.DER.parse_der_length_weak_kind", "Prims.op_AmpAmp", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.DER.parse_der_length_weak", "Prims.bool", "LowParse.Spec.Combinators.serialize_filter", "LowParse.Spec.DER.serialize_der_length_weak", "Prims.l_True", "Prims.squash", "FStar.UInt8.lt", "FStar.UInt8.__uint_to_t", "FStar.Seq.Base.equal", "LowParse.Bytes.byte", "Prims.op_Equality", "FStar.UInt8.t", "Prims.l_and", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "FStar.UInt8.uint_to_t", "FStar.Endianness.n_to_be", "Prims.nat", "Prims.op_GreaterThan", "Prims.pow2", "Prims.op_Multiply", "Prims.op_Subtraction", "Prims.op_LessThan", "LowParse.Spec.DER.log256", "FStar.Seq.Base.seq", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Bytes.bytes", "LowParse.Spec.Base.serialize", "LowParse.Spec.DER.parse_bounded_der_length_kind", "LowParse.Spec.DER.parse_bounded_der_length", "LowParse.Spec.DER.serialize_bounded_der_length", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let serialize_bounded_der_length_unfold (min: der_length_t) (max: der_length_t{min <= max}) (y: bounded_int min max) : Lemma (let res = serialize (serialize_bounded_der_length min max) y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` (Seq.create 1 (U8.uint_to_t y))) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` (E.n_to_be len y))) =
serialize_synth_eq _ (fun (y: der_length_t{min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max)) (fun (y: bounded_int min max) -> (y <: (y: der_length_t{min <= y && y <= max}))) () y; serialize_der_length_weak_unfold y
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.synth_bounded_der_length32_recip
val synth_bounded_der_length32_recip (min: der_length_t) (max: der_length_t{min <= max /\ max < 4294967296}) (x: bounded_int32 min max) : GTot (bounded_int min max)
val synth_bounded_der_length32_recip (min: der_length_t) (max: der_length_t{min <= max /\ max < 4294967296}) (x: bounded_int32 min max) : GTot (bounded_int min max)
let synth_bounded_der_length32_recip (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) (x: bounded_int32 min max) : GTot (bounded_int min max) = U32.v x
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 9, "end_line": 970, "start_col": 0, "start_line": 965 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x)) end else if x = 128uy || x = 255uy then fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x) else if x = 129uy then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) ) end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? serialize_weaken (parse_der_length_payload_kind x) (serialize_der_length_payload_greater x len) end let serialize_der_length_weak : serializer parse_der_length_weak = serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x)) #push-options "--max_ifuel 6 --z3rlimit 64" let serialize_der_length_weak_unfold (y: der_length_t) : Lemma (let res = serialize serialize_der_length_weak y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = let x = tag_of_der_length y in serialize_u8_spec x; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy || x = 255uy then tag_of_der_length_invalid y else if x = 129uy then begin tag_of_der_length_eq_129 y; assert (U8.v (synth_der_length_129_recip x y) == y); let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))) y in serialize_synth_eq' #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) y s1 () (serialize serialize_u8 (synth_der_length_129_recip x y)) () ; serialize_u8_spec (U8.uint_to_t y); () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? assert ( serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y ); serialize_synth_eq' #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () y (serialize (serialize_der_length_payload_greater x len) y) (_ by (FStar.Tactics.trefl ())) (serialize (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (synth_der_length_greater_recip x len y) ) () ; serialize_synth_eq _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () (synth_der_length_greater_recip x len y); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); () end; () #pop-options let serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length_weak min max)) = serialize_synth _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () let serialize_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length min max)) = Classical.forall_intro (parse_bounded_der_length_eq min max); serialize_ext _ (serialize_bounded_der_length_weak min max) (parse_bounded_der_length min max) let serialize_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (y: bounded_int min max) : Lemma (let res = serialize (serialize_bounded_der_length min max) y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = serialize_synth_eq _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () y; serialize_der_length_weak_unfold y (* 32-bit spec *) module U32 = FStar.UInt32 let der_length_payload_size_of_tag_inv32 (x: der_length_t) : Lemma (requires (x < 4294967296)) (ensures ( tag_of_der_length x == ( if x < 128 then U8.uint_to_t x else if x < 256 then 129uy else if x < 65536 then 130uy else if x < 16777216 then 131uy else 132uy ))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); if x < 256 then log256_unique x 1 else if x < 65536 then log256_unique x 2 else if x < 16777216 then log256_unique x 3 else log256_unique x 4 let synth_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) (y: refine_with_tag tag_of_der_length x) : GTot (refine_with_tag tag_of_der_length32 x) = let _ = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end in U32.uint_to_t y let synth_der_length_payload32_injective (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Lemma (synth_injective (synth_der_length_payload32 x)) [SMTPat (synth_injective (synth_der_length_payload32 x))] = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) -> if y1 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y1) == 128 + log256 y1) end; if y2 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y2) == 128 + log256 y2) end ) let parse_der_length_payload32 x : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x)) = parse_der_length_payload x `parse_synth` synth_der_length_payload32 x let be_int_of_bounded_integer (len: integer_size) (x: nat { x < pow2 (8 * len) } ) : GTot (bounded_integer len) = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); U32.uint_to_t x let be_int_of_bounded_integer_injective (len: integer_size) : Lemma (synth_injective (be_int_of_bounded_integer len)) [SMTPat (synth_injective (be_int_of_bounded_integer len))] // FIXME: WHY WHY WHY does this pattern NEVER trigger? = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) #push-options "--max_ifuel 4 --z3rlimit 16" let parse_seq_flbytes_synth_be_int_eq (len: integer_size) (input: bytes) : Lemma ( let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse ( parse_synth #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len) ) (be_int_of_bounded_integer len) ) input == parse (parse_bounded_integer len) input) = let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse_synth_eq (parse_seq_flbytes len `parse_synth` synth_be_int len) (be_int_of_bounded_integer len) input; parse_synth_eq (parse_seq_flbytes len) (synth_be_int len) input; parser_kind_prop_equiv (parse_bounded_integer_kind len) (parse_bounded_integer len); parse_bounded_integer_spec len input let parse_der_length_payload32_unfold x input = parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 (8 * 1) == 256); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in begin match parse (parse_der_length_payload x) input with | None -> () | Some (y, _) -> if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end end; parse_der_length_payload_unfold x input; if U8.v x < 128 then () // tag_of_der_length (U8.v x) == x /\ y == Some (Cast.uint8_to_uint32 x, 0) else if x = 128uy || x = 255uy then () // y == None else if x = 129uy then () else begin let len : nat = U8.v x - 128 in assert (2 <= len /\ len <= 4); let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse_seq_flbytes_synth_be_int_eq len input; integer_size_values len; parse_synth_eq #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len)) (be_int_of_bounded_integer len) input end #pop-options let log256_eq x = log256_unique x (log256' x) let synth_bounded_der_length32 (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) (x: bounded_int min max) : Tot (bounded_int32 min max) = U32.uint_to_t x let parse_bounded_der_length32 (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) : Tot (parser (parse_bounded_der_length32_kind min max) (bounded_int32 min max)) = parse_bounded_der_length min max `parse_synth` synth_bounded_der_length32 min max #push-options "--z3rlimit 50" let parse_bounded_der_length32_unfold min max input = parse_synth_eq (parse_bounded_der_length min max) (synth_bounded_der_length32 min max) input; parse_bounded_der_length_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in assert_norm (4294967296 <= der_length_max); der_length_payload_size_le max 4294967295; assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); log256_unique 4294967295 4; parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input' ; match parse (parse_der_length_payload x) input' with | None -> () | Some (y, _) -> if y >= 128 then begin assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end else () #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max /\ max < 4294967296} -> x: LowParse.Spec.BoundedInt.bounded_int32 min max -> Prims.GTot (LowParse.Spec.DER.bounded_int min max)
Prims.GTot
[ "sometrivial" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.Spec.BoundedInt.bounded_int32", "FStar.UInt32.v", "LowParse.Spec.DER.bounded_int" ]
[]
false
false
false
false
false
let synth_bounded_der_length32_recip (min: der_length_t) (max: der_length_t{min <= max /\ max < 4294967296}) (x: bounded_int32 min max) : GTot (bounded_int min max) =
U32.v x
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_seq_flbytes_synth_be_int_eq
val parse_seq_flbytes_synth_be_int_eq (len: integer_size) (input: bytes) : Lemma (let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse (parse_synth #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len)) (be_int_of_bounded_integer len)) input == parse (parse_bounded_integer len) input)
val parse_seq_flbytes_synth_be_int_eq (len: integer_size) (input: bytes) : Lemma (let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse (parse_synth #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len)) (be_int_of_bounded_integer len)) input == parse (parse_bounded_integer len) input)
let parse_seq_flbytes_synth_be_int_eq (len: integer_size) (input: bytes) : Lemma ( let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse ( parse_synth #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len) ) (be_int_of_bounded_integer len) ) input == parse (parse_bounded_integer len) input) = let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse_synth_eq (parse_seq_flbytes len `parse_synth` synth_be_int len) (be_int_of_bounded_integer len) input; parse_synth_eq (parse_seq_flbytes len) (synth_be_int len) input; parser_kind_prop_equiv (parse_bounded_integer_kind len) (parse_bounded_integer len); parse_bounded_integer_spec len input
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 40, "end_line": 874, "start_col": 0, "start_line": 853 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x)) end else if x = 128uy || x = 255uy then fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x) else if x = 129uy then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) ) end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? serialize_weaken (parse_der_length_payload_kind x) (serialize_der_length_payload_greater x len) end let serialize_der_length_weak : serializer parse_der_length_weak = serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x)) #push-options "--max_ifuel 6 --z3rlimit 64" let serialize_der_length_weak_unfold (y: der_length_t) : Lemma (let res = serialize serialize_der_length_weak y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = let x = tag_of_der_length y in serialize_u8_spec x; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy || x = 255uy then tag_of_der_length_invalid y else if x = 129uy then begin tag_of_der_length_eq_129 y; assert (U8.v (synth_der_length_129_recip x y) == y); let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))) y in serialize_synth_eq' #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) y s1 () (serialize serialize_u8 (synth_der_length_129_recip x y)) () ; serialize_u8_spec (U8.uint_to_t y); () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? assert ( serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y ); serialize_synth_eq' #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () y (serialize (serialize_der_length_payload_greater x len) y) (_ by (FStar.Tactics.trefl ())) (serialize (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (synth_der_length_greater_recip x len y) ) () ; serialize_synth_eq _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () (synth_der_length_greater_recip x len y); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); () end; () #pop-options let serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length_weak min max)) = serialize_synth _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () let serialize_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length min max)) = Classical.forall_intro (parse_bounded_der_length_eq min max); serialize_ext _ (serialize_bounded_der_length_weak min max) (parse_bounded_der_length min max) let serialize_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (y: bounded_int min max) : Lemma (let res = serialize (serialize_bounded_der_length min max) y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = serialize_synth_eq _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () y; serialize_der_length_weak_unfold y (* 32-bit spec *) module U32 = FStar.UInt32 let der_length_payload_size_of_tag_inv32 (x: der_length_t) : Lemma (requires (x < 4294967296)) (ensures ( tag_of_der_length x == ( if x < 128 then U8.uint_to_t x else if x < 256 then 129uy else if x < 65536 then 130uy else if x < 16777216 then 131uy else 132uy ))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); if x < 256 then log256_unique x 1 else if x < 65536 then log256_unique x 2 else if x < 16777216 then log256_unique x 3 else log256_unique x 4 let synth_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) (y: refine_with_tag tag_of_der_length x) : GTot (refine_with_tag tag_of_der_length32 x) = let _ = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end in U32.uint_to_t y let synth_der_length_payload32_injective (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Lemma (synth_injective (synth_der_length_payload32 x)) [SMTPat (synth_injective (synth_der_length_payload32 x))] = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) -> if y1 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y1) == 128 + log256 y1) end; if y2 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y2) == 128 + log256 y2) end ) let parse_der_length_payload32 x : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x)) = parse_der_length_payload x `parse_synth` synth_der_length_payload32 x let be_int_of_bounded_integer (len: integer_size) (x: nat { x < pow2 (8 * len) } ) : GTot (bounded_integer len) = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); U32.uint_to_t x let be_int_of_bounded_integer_injective (len: integer_size) : Lemma (synth_injective (be_int_of_bounded_integer len)) [SMTPat (synth_injective (be_int_of_bounded_integer len))] // FIXME: WHY WHY WHY does this pattern NEVER trigger? = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) #push-options "--max_ifuel 4 --z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 4, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: LowParse.Spec.BoundedInt.integer_size -> input: LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (ensures ([@@ FStar.Pervasives.inline_let ]let _ = LowParse.Spec.DER.synth_be_int_injective len in [@@ FStar.Pervasives.inline_let ]let _ = LowParse.Spec.DER.be_int_of_bounded_integer_injective len in LowParse.Spec.Base.parse (LowParse.Spec.Combinators.parse_synth (LowParse.Spec.Combinators.parse_synth (LowParse.Spec.SeqBytes.Base.parse_seq_flbytes len) (LowParse.Spec.DER.synth_be_int len)) (LowParse.Spec.DER.be_int_of_bounded_integer len)) input == LowParse.Spec.Base.parse (LowParse.Spec.BoundedInt.parse_bounded_integer len) input))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.BoundedInt.integer_size", "LowParse.Bytes.bytes", "LowParse.Spec.BoundedInt.parse_bounded_integer_spec", "Prims.unit", "LowParse.Spec.Base.parser_kind_prop_equiv", "LowParse.Spec.BoundedInt.bounded_integer", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "LowParse.Spec.BoundedInt.parse_bounded_integer", "LowParse.Spec.Combinators.parse_synth_eq", "LowParse.Spec.Base.total_constant_size_parser_kind", "FStar.Seq.Properties.lseq", "LowParse.Bytes.byte", "LowParse.Spec.DER.lint", "LowParse.Spec.SeqBytes.Base.parse_seq_flbytes", "LowParse.Spec.DER.synth_be_int", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.DER.be_int_of_bounded_integer", "LowParse.Spec.DER.be_int_of_bounded_integer_injective", "LowParse.Spec.DER.synth_be_int_injective", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.parse", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let parse_seq_flbytes_synth_be_int_eq (len: integer_size) (input: bytes) : Lemma (let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse (parse_synth #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len)) (be_int_of_bounded_integer len)) input == parse (parse_bounded_integer len) input) =
let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse_synth_eq ((parse_seq_flbytes len) `parse_synth` (synth_be_int len)) (be_int_of_bounded_integer len) input; parse_synth_eq (parse_seq_flbytes len) (synth_be_int len) input; parser_kind_prop_equiv (parse_bounded_integer_kind len) (parse_bounded_integer len); parse_bounded_integer_spec len input
false
Pulse.Typing.Metatheory.Base.fsti
Pulse.Typing.Metatheory.Base.nt
val nt : x: Pulse.Syntax.Base.var -> t: Pulse.Syntax.Base.term -> Prims.list Pulse.Syntax.Naming.subst_elt
let nt (x:var) (t:term) = [ NT x t ]
{ "file_name": "lib/steel/pulse/Pulse.Typing.Metatheory.Base.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 36, "end_line": 113, "start_col": 0, "start_line": 113 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Typing.Metatheory.Base open Pulse.Syntax open Pulse.Syntax.Naming open Pulse.Typing module RU = Pulse.RuntimeUtils module T = FStar.Tactics.V2 val admit_comp_typing (g:env) (c:comp_st) : comp_typing_u g c module RT = FStar.Reflection.Typing let rt_equiv_typing (#g:_) (#t0 #t1:_) (d:RT.equiv g t0 t1) (#k:_) (d1:Ghost.erased (RT.tot_typing g t0 k)) : Ghost.erased (RT.tot_typing g t1 k) = admit() val st_typing_correctness_ctot (#g:env) (#t:st_term) (#c:comp{C_Tot? c}) (_:st_typing g t c) : (u:Ghost.erased universe & universe_of g (comp_res c) u) let inames_of_comp_st (c:comp_st) = match c with | C_STAtomic _ _ _ -> comp_inames c | _ -> tm_emp_inames let iname_typing (g:env) (c:comp_st) = tot_typing g (inames_of_comp_st c) tm_inames val st_typing_correctness (#g:env) (#t:st_term) (#c:comp_st) (d:st_typing g t c) : comp_typing_u g c val comp_typing_inversion (#g:env) (#c:comp_st) (ct:comp_typing_u g c) : st_comp_typing g (st_comp_of_comp c) & iname_typing g c val st_comp_typing_inversion_cofinite (#g:env) (#st:_) (ct:st_comp_typing g st) : (universe_of g st.res st.u & tot_typing g st.pre tm_vprop & (x:var{fresh_wrt x g (freevars st.post)} -> //this part is tricky, to get the quantification on x tot_typing (push_binding g x ppname_default st.res) (open_term st.post x) tm_vprop)) val st_comp_typing_inversion (#g:env) (#st:_) (ct:st_comp_typing g st) : (universe_of g st.res st.u & tot_typing g st.pre tm_vprop & x:var{fresh_wrt x g (freevars st.post)} & tot_typing (push_binding g x ppname_default st.res) (open_term st.post x) tm_vprop) val tm_exists_inversion (#g:env) (#u:universe) (#ty:term) (#p:term) (_:tot_typing g (tm_exists_sl u (as_binder ty) p) tm_vprop) (x:var { fresh_wrt x g (freevars p) } ) : universe_of g ty u & tot_typing (push_binding g x ppname_default ty) p tm_vprop val pure_typing_inversion (#g:env) (#p:term) (_:tot_typing g (tm_pure p) tm_vprop) : tot_typing g p (tm_fstar FStar.Reflection.Typing.tm_prop Range.range_0) module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module C = FStar.Stubs.TypeChecker.Core open FStar.Ghost val typing_correctness (#g:R.env) (#t:R.term) (#ty:R.typ) (#eff:_) (_:erased (RT.typing g t (eff, ty))) : erased (u:R.universe & RT.typing g ty (C.E_Total, RT.tm_type u)) let renaming x y = [NT x (tm_var {nm_index=y; nm_ppname=ppname_default})] val tot_typing_renaming1 (g:env) (x:var {None? (lookup g x)}) (tx e ty:term) (_:tot_typing (push_binding g x ppname_default tx) e ty) (y:var { None? (lookup g y) /\ x <> y }) : tot_typing (push_binding g y ppname_default tx) (subst_term e (renaming x y)) (subst_term ty (renaming x y)) val tot_typing_weakening (g:env) (g':env { disjoint g g' }) (t:term) (ty:typ) (_:tot_typing (push_env g g') t ty) (g1:env { pairwise_disjoint g g1 g' }) : tot_typing (push_env (push_env g g1) g') t ty val st_typing_weakening (g:env) (g':env { disjoint g g' }) (t:st_term) (c:comp) (_:st_typing (push_env g g') t c) (g1:env { pairwise_disjoint g g1 g' }) : st_typing (push_env (push_env g g1) g') t c let veq_weakening (g:env) (g':env { disjoint g g' }) (#v1 #v2:vprop) (_:vprop_equiv (push_env g g') v1 v2) (g1:env { pairwise_disjoint g g1 g' }) : vprop_equiv (push_env (push_env g g1) g') v1 v2 = RU.magic ()
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.Naming.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.TypeChecker.Core.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Range.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Typing.Metatheory.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.Stubs.TypeChecker.Core", "short_module": "C" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Naming", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Naming", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Pulse.Syntax.Base.var -> t: Pulse.Syntax.Base.term -> Prims.list Pulse.Syntax.Naming.subst_elt
Prims.Tot
[ "total" ]
[]
[ "Pulse.Syntax.Base.var", "Pulse.Syntax.Base.term", "Prims.Cons", "Pulse.Syntax.Naming.subst_elt", "Pulse.Syntax.Naming.NT", "Prims.Nil", "Prims.list" ]
[]
false
false
false
true
false
let nt (x: var) (t: term) =
[NT x t]
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.tag_of_der_length_eq_129
val tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256))
val tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256))
let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 52, "end_line": 460, "start_col": 0, "start_line": 450 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: LowParse.Spec.DER.der_length_t -> FStar.Pervasives.Lemma (requires FStar.UInt8.v (LowParse.Spec.DER.tag_of_der_length x) == 129) (ensures x >= 128 /\ x < 256)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.op_LessThan", "Prims.bool", "LowParse.Math.pow2_lt_recip", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "LowParse.Spec.DER.der_length_max", "Prims.pow2", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Multiply", "LowParse.Spec.DER.log256", "FStar.UInt8.v", "LowParse.Spec.DER.tag_of_der_length", "Prims.squash", "Prims.op_GreaterThanOrEqual", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) =
if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126)
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.log256_eq
val log256_eq (x: nat) : Lemma (requires (x > 0 /\ x < 4294967296)) (ensures (log256 x == log256' x))
val log256_eq (x: nat) : Lemma (requires (x > 0 /\ x < 4294967296)) (ensures (log256 x == log256' x))
let log256_eq x = log256_unique x (log256' x)
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 29, "end_line": 920, "start_col": 0, "start_line": 918 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x)) end else if x = 128uy || x = 255uy then fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x) else if x = 129uy then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) ) end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? serialize_weaken (parse_der_length_payload_kind x) (serialize_der_length_payload_greater x len) end let serialize_der_length_weak : serializer parse_der_length_weak = serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x)) #push-options "--max_ifuel 6 --z3rlimit 64" let serialize_der_length_weak_unfold (y: der_length_t) : Lemma (let res = serialize serialize_der_length_weak y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = let x = tag_of_der_length y in serialize_u8_spec x; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy || x = 255uy then tag_of_der_length_invalid y else if x = 129uy then begin tag_of_der_length_eq_129 y; assert (U8.v (synth_der_length_129_recip x y) == y); let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))) y in serialize_synth_eq' #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) y s1 () (serialize serialize_u8 (synth_der_length_129_recip x y)) () ; serialize_u8_spec (U8.uint_to_t y); () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? assert ( serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y ); serialize_synth_eq' #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () y (serialize (serialize_der_length_payload_greater x len) y) (_ by (FStar.Tactics.trefl ())) (serialize (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (synth_der_length_greater_recip x len y) ) () ; serialize_synth_eq _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () (synth_der_length_greater_recip x len y); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); () end; () #pop-options let serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length_weak min max)) = serialize_synth _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () let serialize_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length min max)) = Classical.forall_intro (parse_bounded_der_length_eq min max); serialize_ext _ (serialize_bounded_der_length_weak min max) (parse_bounded_der_length min max) let serialize_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (y: bounded_int min max) : Lemma (let res = serialize (serialize_bounded_der_length min max) y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = serialize_synth_eq _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () y; serialize_der_length_weak_unfold y (* 32-bit spec *) module U32 = FStar.UInt32 let der_length_payload_size_of_tag_inv32 (x: der_length_t) : Lemma (requires (x < 4294967296)) (ensures ( tag_of_der_length x == ( if x < 128 then U8.uint_to_t x else if x < 256 then 129uy else if x < 65536 then 130uy else if x < 16777216 then 131uy else 132uy ))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); if x < 256 then log256_unique x 1 else if x < 65536 then log256_unique x 2 else if x < 16777216 then log256_unique x 3 else log256_unique x 4 let synth_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) (y: refine_with_tag tag_of_der_length x) : GTot (refine_with_tag tag_of_der_length32 x) = let _ = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end in U32.uint_to_t y let synth_der_length_payload32_injective (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Lemma (synth_injective (synth_der_length_payload32 x)) [SMTPat (synth_injective (synth_der_length_payload32 x))] = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) -> if y1 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y1) == 128 + log256 y1) end; if y2 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y2) == 128 + log256 y2) end ) let parse_der_length_payload32 x : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x)) = parse_der_length_payload x `parse_synth` synth_der_length_payload32 x let be_int_of_bounded_integer (len: integer_size) (x: nat { x < pow2 (8 * len) } ) : GTot (bounded_integer len) = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); U32.uint_to_t x let be_int_of_bounded_integer_injective (len: integer_size) : Lemma (synth_injective (be_int_of_bounded_integer len)) [SMTPat (synth_injective (be_int_of_bounded_integer len))] // FIXME: WHY WHY WHY does this pattern NEVER trigger? = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) #push-options "--max_ifuel 4 --z3rlimit 16" let parse_seq_flbytes_synth_be_int_eq (len: integer_size) (input: bytes) : Lemma ( let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse ( parse_synth #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len) ) (be_int_of_bounded_integer len) ) input == parse (parse_bounded_integer len) input) = let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse_synth_eq (parse_seq_flbytes len `parse_synth` synth_be_int len) (be_int_of_bounded_integer len) input; parse_synth_eq (parse_seq_flbytes len) (synth_be_int len) input; parser_kind_prop_equiv (parse_bounded_integer_kind len) (parse_bounded_integer len); parse_bounded_integer_spec len input let parse_der_length_payload32_unfold x input = parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 (8 * 1) == 256); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in begin match parse (parse_der_length_payload x) input with | None -> () | Some (y, _) -> if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end end; parse_der_length_payload_unfold x input; if U8.v x < 128 then () // tag_of_der_length (U8.v x) == x /\ y == Some (Cast.uint8_to_uint32 x, 0) else if x = 128uy || x = 255uy then () // y == None else if x = 129uy then () else begin let len : nat = U8.v x - 128 in assert (2 <= len /\ len <= 4); let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse_seq_flbytes_synth_be_int_eq len input; integer_size_values len; parse_synth_eq #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len)) (be_int_of_bounded_integer len) input end #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> FStar.Pervasives.Lemma (requires x > 0 /\ x < 4294967296) (ensures LowParse.Spec.DER.log256 x == LowParse.Spec.BoundedInt.log256' x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "LowParse.Spec.DER.log256_unique", "LowParse.Spec.BoundedInt.log256'", "Prims.unit" ]
[]
true
false
true
false
false
let log256_eq x =
log256_unique x (log256' x)
false
Pulse.Typing.Metatheory.Base.fsti
Pulse.Typing.Metatheory.Base.iname_typing
val iname_typing : g: Pulse.Typing.Env.env -> c: Pulse.Syntax.Base.comp_st -> Type0
let iname_typing (g:env) (c:comp_st) = tot_typing g (inames_of_comp_st c) tm_inames
{ "file_name": "lib/steel/pulse/Pulse.Typing.Metatheory.Base.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 83, "end_line": 43, "start_col": 0, "start_line": 43 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Typing.Metatheory.Base open Pulse.Syntax open Pulse.Syntax.Naming open Pulse.Typing module RU = Pulse.RuntimeUtils module T = FStar.Tactics.V2 val admit_comp_typing (g:env) (c:comp_st) : comp_typing_u g c module RT = FStar.Reflection.Typing let rt_equiv_typing (#g:_) (#t0 #t1:_) (d:RT.equiv g t0 t1) (#k:_) (d1:Ghost.erased (RT.tot_typing g t0 k)) : Ghost.erased (RT.tot_typing g t1 k) = admit() val st_typing_correctness_ctot (#g:env) (#t:st_term) (#c:comp{C_Tot? c}) (_:st_typing g t c) : (u:Ghost.erased universe & universe_of g (comp_res c) u) let inames_of_comp_st (c:comp_st) = match c with | C_STAtomic _ _ _ -> comp_inames c | _ -> tm_emp_inames
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.Naming.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.TypeChecker.Core.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Range.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Typing.Metatheory.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Naming", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Naming", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> c: Pulse.Syntax.Base.comp_st -> Type0
Prims.Tot
[ "total" ]
[]
[ "Pulse.Typing.Env.env", "Pulse.Syntax.Base.comp_st", "Pulse.Typing.tot_typing", "Pulse.Typing.Metatheory.Base.inames_of_comp_st", "Pulse.Syntax.Base.tm_inames" ]
[]
false
false
false
true
true
let iname_typing (g: env) (c: comp_st) =
tot_typing g (inames_of_comp_st c) tm_inames
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.serialize_bounded_der_length32
val serialize_bounded_der_length32 (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) : Tot (serializer (parse_bounded_der_length32 min max))
val serialize_bounded_der_length32 (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) : Tot (serializer (parse_bounded_der_length32 min max))
let serialize_bounded_der_length32 (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) : Tot (serializer (parse_bounded_der_length32 min max)) = serialize_synth _ (synth_bounded_der_length32 min max) (serialize_bounded_der_length min max) (synth_bounded_der_length32_recip min max) ()
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 6, "end_line": 981, "start_col": 0, "start_line": 972 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x)) end else if x = 128uy || x = 255uy then fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x) else if x = 129uy then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) ) end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? serialize_weaken (parse_der_length_payload_kind x) (serialize_der_length_payload_greater x len) end let serialize_der_length_weak : serializer parse_der_length_weak = serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x)) #push-options "--max_ifuel 6 --z3rlimit 64" let serialize_der_length_weak_unfold (y: der_length_t) : Lemma (let res = serialize serialize_der_length_weak y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = let x = tag_of_der_length y in serialize_u8_spec x; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy || x = 255uy then tag_of_der_length_invalid y else if x = 129uy then begin tag_of_der_length_eq_129 y; assert (U8.v (synth_der_length_129_recip x y) == y); let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))) y in serialize_synth_eq' #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) y s1 () (serialize serialize_u8 (synth_der_length_129_recip x y)) () ; serialize_u8_spec (U8.uint_to_t y); () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? assert ( serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y ); serialize_synth_eq' #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () y (serialize (serialize_der_length_payload_greater x len) y) (_ by (FStar.Tactics.trefl ())) (serialize (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (synth_der_length_greater_recip x len y) ) () ; serialize_synth_eq _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () (synth_der_length_greater_recip x len y); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); () end; () #pop-options let serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length_weak min max)) = serialize_synth _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () let serialize_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length min max)) = Classical.forall_intro (parse_bounded_der_length_eq min max); serialize_ext _ (serialize_bounded_der_length_weak min max) (parse_bounded_der_length min max) let serialize_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (y: bounded_int min max) : Lemma (let res = serialize (serialize_bounded_der_length min max) y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = serialize_synth_eq _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () y; serialize_der_length_weak_unfold y (* 32-bit spec *) module U32 = FStar.UInt32 let der_length_payload_size_of_tag_inv32 (x: der_length_t) : Lemma (requires (x < 4294967296)) (ensures ( tag_of_der_length x == ( if x < 128 then U8.uint_to_t x else if x < 256 then 129uy else if x < 65536 then 130uy else if x < 16777216 then 131uy else 132uy ))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); if x < 256 then log256_unique x 1 else if x < 65536 then log256_unique x 2 else if x < 16777216 then log256_unique x 3 else log256_unique x 4 let synth_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) (y: refine_with_tag tag_of_der_length x) : GTot (refine_with_tag tag_of_der_length32 x) = let _ = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end in U32.uint_to_t y let synth_der_length_payload32_injective (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Lemma (synth_injective (synth_der_length_payload32 x)) [SMTPat (synth_injective (synth_der_length_payload32 x))] = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) -> if y1 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y1) == 128 + log256 y1) end; if y2 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y2) == 128 + log256 y2) end ) let parse_der_length_payload32 x : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x)) = parse_der_length_payload x `parse_synth` synth_der_length_payload32 x let be_int_of_bounded_integer (len: integer_size) (x: nat { x < pow2 (8 * len) } ) : GTot (bounded_integer len) = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); U32.uint_to_t x let be_int_of_bounded_integer_injective (len: integer_size) : Lemma (synth_injective (be_int_of_bounded_integer len)) [SMTPat (synth_injective (be_int_of_bounded_integer len))] // FIXME: WHY WHY WHY does this pattern NEVER trigger? = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) #push-options "--max_ifuel 4 --z3rlimit 16" let parse_seq_flbytes_synth_be_int_eq (len: integer_size) (input: bytes) : Lemma ( let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse ( parse_synth #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len) ) (be_int_of_bounded_integer len) ) input == parse (parse_bounded_integer len) input) = let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse_synth_eq (parse_seq_flbytes len `parse_synth` synth_be_int len) (be_int_of_bounded_integer len) input; parse_synth_eq (parse_seq_flbytes len) (synth_be_int len) input; parser_kind_prop_equiv (parse_bounded_integer_kind len) (parse_bounded_integer len); parse_bounded_integer_spec len input let parse_der_length_payload32_unfold x input = parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 (8 * 1) == 256); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in begin match parse (parse_der_length_payload x) input with | None -> () | Some (y, _) -> if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end end; parse_der_length_payload_unfold x input; if U8.v x < 128 then () // tag_of_der_length (U8.v x) == x /\ y == Some (Cast.uint8_to_uint32 x, 0) else if x = 128uy || x = 255uy then () // y == None else if x = 129uy then () else begin let len : nat = U8.v x - 128 in assert (2 <= len /\ len <= 4); let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse_seq_flbytes_synth_be_int_eq len input; integer_size_values len; parse_synth_eq #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len)) (be_int_of_bounded_integer len) input end #pop-options let log256_eq x = log256_unique x (log256' x) let synth_bounded_der_length32 (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) (x: bounded_int min max) : Tot (bounded_int32 min max) = U32.uint_to_t x let parse_bounded_der_length32 (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) : Tot (parser (parse_bounded_der_length32_kind min max) (bounded_int32 min max)) = parse_bounded_der_length min max `parse_synth` synth_bounded_der_length32 min max #push-options "--z3rlimit 50" let parse_bounded_der_length32_unfold min max input = parse_synth_eq (parse_bounded_der_length min max) (synth_bounded_der_length32 min max) input; parse_bounded_der_length_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in assert_norm (4294967296 <= der_length_max); der_length_payload_size_le max 4294967295; assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); log256_unique 4294967295 4; parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input' ; match parse (parse_der_length_payload x) input' with | None -> () | Some (y, _) -> if y >= 128 then begin assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end else () #pop-options let synth_bounded_der_length32_recip (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) (x: bounded_int32 min max) : GTot (bounded_int min max) = U32.v x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max /\ max < 4294967296} -> LowParse.Spec.Base.serializer (LowParse.Spec.DER.parse_bounded_der_length32 min max)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.Spec.Combinators.serialize_synth", "LowParse.Spec.DER.parse_bounded_der_length_kind", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.Spec.DER.parse_bounded_der_length", "LowParse.Spec.DER.synth_bounded_der_length32", "LowParse.Spec.DER.serialize_bounded_der_length", "LowParse.Spec.DER.synth_bounded_der_length32_recip", "LowParse.Spec.Base.serializer", "LowParse.Spec.DER.parse_bounded_der_length32_kind", "LowParse.Spec.DER.parse_bounded_der_length32" ]
[]
false
false
false
false
false
let serialize_bounded_der_length32 (min: der_length_t) (max: der_length_t{min <= max /\ max < 4294967296}) : Tot (serializer (parse_bounded_der_length32 min max)) =
serialize_synth _ (synth_bounded_der_length32 min max) (serialize_bounded_der_length min max) (synth_bounded_der_length32_recip min max) ()
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.parse_bounded_der_length32
val parse_bounded_der_length32 (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) : Tot (parser (parse_bounded_der_length32_kind min max) (bounded_int32 min max))
val parse_bounded_der_length32 (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) : Tot (parser (parse_bounded_der_length32_kind min max) (bounded_int32 min max))
let parse_bounded_der_length32 (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) : Tot (parser (parse_bounded_der_length32_kind min max) (bounded_int32 min max)) = parse_bounded_der_length min max `parse_synth` synth_bounded_der_length32 min max
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 83, "end_line": 933, "start_col": 0, "start_line": 929 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = () let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y let synth_der_length_greater_inverse (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) : Lemma (synth_inverse (synth_der_length_greater x len) (synth_der_length_greater_recip x len)) = () private let serialize_der_length_payload_greater (x: U8.t { not (U8.v x < 128 || x = 128uy || x = 255uy || x = 129uy) } ) (len: nat { len == U8.v x - 128 } ) = (serialize_synth #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () ) let tag_of_der_length_lt_128_eta (x:U8.t{U8.v x < 128}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_lt_128 y <: Lemma (U8.v x == y) let tag_of_der_length_invalid_eta (x:U8.t{U8.v x == 128 \/ U8.v x == 255}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_invalid y <: Lemma False let tag_of_der_length_eq_129_eta (x:U8.t{U8.v x == 129}) = fun (y: refine_with_tag tag_of_der_length x) -> tag_of_der_length_eq_129 y <: Lemma (synth_der_length_129 x (synth_der_length_129_recip x y) == y) let serialize_der_length_payload (x: U8.t) : Tot (serializer (parse_der_length_payload x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_ret (x' <: refine_with_tag tag_of_der_length x) (tag_of_der_length_lt_128_eta x)) end else if x = 128uy || x = 255uy then fail_serializer (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) (tag_of_der_length_invalid_eta x) else if x = 129uy then begin serialize_weaken (parse_der_length_payload_kind x) (serialize_synth (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) ) end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? serialize_weaken (parse_der_length_payload_kind x) (serialize_der_length_payload_greater x len) end let serialize_der_length_weak : serializer parse_der_length_weak = serialize_tagged_union serialize_u8 tag_of_der_length (fun x -> serialize_weaken parse_der_length_payload_kind_weak (serialize_der_length_payload x)) #push-options "--max_ifuel 6 --z3rlimit 64" let serialize_der_length_weak_unfold (y: der_length_t) : Lemma (let res = serialize serialize_der_length_weak y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = let x = tag_of_der_length y in serialize_u8_spec x; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy || x = 255uy then tag_of_der_length_invalid y else if x = 129uy then begin tag_of_der_length_eq_129 y; assert (U8.v (synth_der_length_129_recip x y) == y); let s1 = serialize ( serialize_synth #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x))) y in serialize_synth_eq' #_ #(parse_filter_refine #U8.t (fun y -> U8.v y >= 128)) #(refine_with_tag tag_of_der_length x) (parse_filter parse_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129 x) (serialize_filter serialize_u8 (fun y -> U8.v y >= 128)) (synth_der_length_129_recip x) (synth_inverse_intro' (synth_der_length_129 x) (synth_der_length_129_recip x) (tag_of_der_length_eq_129_eta x)) y s1 () (serialize serialize_u8 (synth_der_length_129_recip x y)) () ; serialize_u8_spec (U8.uint_to_t y); () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? assert ( serialize (serialize_der_length_payload x) y == serialize (serialize_der_length_payload_greater x len) y ); serialize_synth_eq' #_ #(parse_filter_refine #(lint len) (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) #(refine_with_tag tag_of_der_length x) _ (synth_der_length_greater x len) (serialize_filter (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) ) (synth_der_length_greater_recip x len) () y (serialize (serialize_der_length_payload_greater x len) y) (_ by (FStar.Tactics.trefl ())) (serialize (serialize_synth #_ #(Seq.lseq byte len) #(lint len) _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () ) (synth_der_length_greater_recip x len y) ) () ; serialize_synth_eq _ (synth_be_int len) (serialize_seq_flbytes len) (synth_be_int_recip len) () (synth_der_length_greater_recip x len y); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); () end; () #pop-options let serialize_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length_weak min max)) = serialize_synth _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () let serialize_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (serializer (parse_bounded_der_length min max)) = Classical.forall_intro (parse_bounded_der_length_eq min max); serialize_ext _ (serialize_bounded_der_length_weak min max) (parse_bounded_der_length min max) let serialize_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (y: bounded_int min max) : Lemma (let res = serialize (serialize_bounded_der_length min max) y in let x = tag_of_der_length y in let s1 = Seq.create 1 x in if x `U8.lt` 128uy then res `Seq.equal` s1 else if x = 129uy then y <= 255 /\ res `Seq.equal` (s1 `Seq.append` Seq.create 1 (U8.uint_to_t y)) else let len = log256 y in res `Seq.equal` (s1 `Seq.append` E.n_to_be len y) ) = serialize_synth_eq _ (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) (serialize_filter serialize_der_length_weak (fun y -> min <= y && y <= max) ) (fun (y : bounded_int min max) -> (y <: (y: der_length_t {min <= y && y <= max}))) () y; serialize_der_length_weak_unfold y (* 32-bit spec *) module U32 = FStar.UInt32 let der_length_payload_size_of_tag_inv32 (x: der_length_t) : Lemma (requires (x < 4294967296)) (ensures ( tag_of_der_length x == ( if x < 128 then U8.uint_to_t x else if x < 256 then 129uy else if x < 65536 then 130uy else if x < 16777216 then 131uy else 132uy ))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); if x < 256 then log256_unique x 1 else if x < 65536 then log256_unique x 2 else if x < 16777216 then log256_unique x 3 else log256_unique x 4 let synth_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) (y: refine_with_tag tag_of_der_length x) : GTot (refine_with_tag tag_of_der_length32 x) = let _ = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end in U32.uint_to_t y let synth_der_length_payload32_injective (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Lemma (synth_injective (synth_der_length_payload32 x)) [SMTPat (synth_injective (synth_der_length_payload32 x))] = assert_norm (der_length_max == pow2 (8 * 126) - 1); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in synth_injective_intro' (synth_der_length_payload32 x) (fun (y1 y2: refine_with_tag tag_of_der_length x) -> if y1 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y1 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y1) == 128 + log256 y1) end; if y2 >= 128 then begin Math.pow2_lt_recip (8 * (log256 y2 - 1)) (8 * 126); assert (U8.v (tag_of_der_length y2) == 128 + log256 y2) end ) let parse_der_length_payload32 x : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length32 x)) = parse_der_length_payload x `parse_synth` synth_der_length_payload32 x let be_int_of_bounded_integer (len: integer_size) (x: nat { x < pow2 (8 * len) } ) : GTot (bounded_integer len) = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296); U32.uint_to_t x let be_int_of_bounded_integer_injective (len: integer_size) : Lemma (synth_injective (be_int_of_bounded_integer len)) [SMTPat (synth_injective (be_int_of_bounded_integer len))] // FIXME: WHY WHY WHY does this pattern NEVER trigger? = integer_size_values len; assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) #push-options "--max_ifuel 4 --z3rlimit 16" let parse_seq_flbytes_synth_be_int_eq (len: integer_size) (input: bytes) : Lemma ( let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse ( parse_synth #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len) ) (be_int_of_bounded_integer len) ) input == parse (parse_bounded_integer len) input) = let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse_synth_eq (parse_seq_flbytes len `parse_synth` synth_be_int len) (be_int_of_bounded_integer len) input; parse_synth_eq (parse_seq_flbytes len) (synth_be_int len) input; parser_kind_prop_equiv (parse_bounded_integer_kind len) (parse_bounded_integer len); parse_bounded_integer_spec len input let parse_der_length_payload32_unfold x input = parse_synth_eq (parse_der_length_payload x) (synth_der_length_payload32 x) input; assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 (8 * 1) == 256); let _ = assert_norm (pow2 (8 * 2) == 65536) in let _ = assert_norm (pow2 (8 * 3) == 16777216) in let _ = assert_norm (pow2 (8 * 4) == 4294967296) in begin match parse (parse_der_length_payload x) input with | None -> () | Some (y, _) -> if y >= 128 then begin Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); assert (U8.v (tag_of_der_length y) == 128 + log256 y) end end; parse_der_length_payload_unfold x input; if U8.v x < 128 then () // tag_of_der_length (U8.v x) == x /\ y == Some (Cast.uint8_to_uint32 x, 0) else if x = 128uy || x = 255uy then () // y == None else if x = 129uy then () else begin let len : nat = U8.v x - 128 in assert (2 <= len /\ len <= 4); let _ = synth_be_int_injective len in let _ = be_int_of_bounded_integer_injective len in parse_seq_flbytes_synth_be_int_eq len input; integer_size_values len; parse_synth_eq #_ #(lint len) #(bounded_integer len) (parse_synth #_ #(Seq.lseq byte len) #(lint len) (parse_seq_flbytes len) (synth_be_int len)) (be_int_of_bounded_integer len) input end #pop-options let log256_eq x = log256_unique x (log256' x) let synth_bounded_der_length32 (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 }) (x: bounded_int min max) : Tot (bounded_int32 min max) = U32.uint_to_t x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max /\ max < 4294967296} -> LowParse.Spec.Base.parser (LowParse.Spec.DER.parse_bounded_der_length32_kind min max) (LowParse.Spec.BoundedInt.bounded_int32 min max)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.DER.parse_bounded_der_length_kind", "LowParse.Spec.DER.bounded_int", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.Spec.DER.parse_bounded_der_length", "LowParse.Spec.DER.synth_bounded_der_length32", "LowParse.Spec.Base.parser", "LowParse.Spec.DER.parse_bounded_der_length32_kind" ]
[]
false
false
false
false
false
let parse_bounded_der_length32 (min: der_length_t) (max: der_length_t{min <= max /\ max < 4294967296}) : Tot (parser (parse_bounded_der_length32_kind min max) (bounded_int32 min max)) =
(parse_bounded_der_length min max) `parse_synth` (synth_bounded_der_length32 min max)
false
LowParse.Spec.DER.fst
LowParse.Spec.DER.synth_der_length_greater_recip
val synth_der_length_greater_recip (x: U8.t{U8.v x > 129 /\ U8.v x < 255}) (len: nat{len == U8.v x % 128}) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len {y >= pow2 (8 * (len - 1))})
val synth_der_length_greater_recip (x: U8.t{U8.v x > 129 /\ U8.v x < 255}) (len: nat{len == U8.v x % 128}) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len {y >= pow2 (8 * (len - 1))})
let synth_der_length_greater_recip (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x % 128 } ) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len { y >= pow2 (8 * (len - 1)) } ) = assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y
{ "file_name": "src/lowparse/LowParse.Spec.DER.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 488, "start_col": 0, "start_line": 481 }
module LowParse.Spec.DER open LowParse.Spec.Combinators open LowParse.Spec.SeqBytes.Base // include LowParse.Spec.VLData // for in_bounds open FStar.Mul module U8 = FStar.UInt8 module UInt = FStar.UInt module Math = LowParse.Math module E = FStar.Endianness module Seq = FStar.Seq #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" // let _ : unit = _ by (FStar.Tactics.(print (string_of_int der_length_max); exact (`()))) let der_length_max_eq = assert_norm (der_length_max == pow2 (8 * 126) - 1) let rec log256 (x: nat { x > 0 }) : Tot (y: nat { y > 0 /\ pow2 (8 * (y - 1)) <= x /\ x < pow2 (8 * y)}) = assert_norm (pow2 8 == 256); if x < 256 then 1 else begin let n = log256 (x / 256) in Math.pow2_plus (8 * (n - 1)) 8; Math.pow2_plus (8 * n) 8; n + 1 end let log256_unique x y = Math.pow2_lt_recip (8 * (y - 1)) (8 * log256 x); Math.pow2_lt_recip (8 * (log256 x - 1)) (8 * y) let log256_le x1 x2 = Math.pow2_lt_recip (8 * (log256 x1 - 1)) (8 * log256 x2) let der_length_payload_size_le x1 x2 = if x1 < 128 || x2 < 128 then () else let len_len2 = log256 x2 in let len_len1 = log256 x1 in log256_le x1 x2; assert_norm (pow2 7 == 128); assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len2 - 1)) (8 * 126) let synth_be_int (len: nat) (b: Seq.lseq byte len) : Tot (lint len) = E.lemma_be_to_n_is_bounded b; E.be_to_n b let synth_be_int_injective (len: nat) : Lemma (synth_injective (synth_be_int len)) [SMTPat (synth_injective (synth_be_int len))] = synth_injective_intro' (synth_be_int len) (fun (x x' : Seq.lseq byte len) -> E.be_to_n_inj x x' ) let synth_der_length_129 (x: U8.t { x == 129uy } ) (y: U8.t { U8.v y >= 128 } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); log256_unique (U8.v y) 1; U8.v y let synth_der_length_greater (x: U8.t { U8.v x > 129 /\ U8.v x < 255 } ) (len: nat { len == U8.v x - 128 } ) (y: lint len { y >= pow2 (8 * (len - 1)) } ) : Tot (refine_with_tag tag_of_der_length x) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len; y let parse_der_length_payload (x: U8.t) : Tot (parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x)) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin weaken (parse_der_length_payload_kind x) (parse_ret (x' <: refine_with_tag tag_of_der_length x)) end else if x = 128uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // DER representation of 0 is covered by the x<128 case else if x = 255uy then fail_parser (parse_der_length_payload_kind x) (refine_with_tag tag_of_der_length x) // forbidden in BER already else if x = 129uy then weaken (parse_der_length_payload_kind x) ((parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) `parse_synth` synth_der_length_129 x) else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? weaken (parse_der_length_payload_kind x) (((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) `parse_synth` synth_der_length_greater x len) end let parse_der_length_payload_unfold (x: U8.t) (input: bytes) : Lemma ( let y = parse (parse_der_length_payload x) input in (256 < der_length_max) /\ ( if U8.v x < 128 then tag_of_der_length (U8.v x) == x /\ y == Some (U8.v x, 0) else if x = 128uy || x = 255uy then y == None else if x = 129uy then match parse parse_u8 input with | None -> y == None | Some (z, consumed) -> if U8.v z < 128 then y == None else tag_of_der_length (U8.v z) == x /\ y == Some (U8.v z, consumed) else let len : nat = U8.v x - 128 in synth_injective (synth_be_int len) /\ ( let res : option (lint len & consumed_length input) = parse (parse_synth (parse_seq_flbytes len) (synth_be_int len)) input in match res with | None -> y == None | Some (z, consumed) -> len > 0 /\ ( if z >= pow2 (8 * (len - 1)) then z <= der_length_max /\ tag_of_der_length z == x /\ y == Some ((z <: refine_with_tag tag_of_der_length x), consumed) else y == None )))) = assert_norm (der_length_max == pow2 (8 * 126) - 1); assert_norm (pow2 7 == 128); assert_norm (pow2 8 == 256); assert_norm (256 < der_length_max); assert (U8.v x <= der_length_max); let (x' : der_length_t) = U8.v x in if x' < 128 then begin () end else if x = 128uy then () else if x = 255uy then () else if x = 129uy then begin parse_synth_eq (parse_u8 `parse_filter` (fun y -> U8.v y >= 128)) (synth_der_length_129 x) input; parse_filter_eq parse_u8 (fun y -> U8.v y >= 128) input; match parse parse_u8 input with | None -> () | Some (y, _) -> if U8.v y >= 128 then begin log256_unique (U8.v y) 1 end else () end else begin let len : nat = U8.v x - 128 in synth_be_int_injective len; // FIXME: WHY WHY WHY does the pattern not trigger, even with higher rlimit? parse_synth_eq ((parse_seq_flbytes len `parse_synth` (synth_be_int len)) `parse_filter` (fun (y: lint len) -> y >= pow2 (8 * (len - 1)))) (synth_der_length_greater x len) input; parse_filter_eq (parse_seq_flbytes len `parse_synth` (synth_be_int len)) (fun (y: lint len) -> y >= pow2 (8 * (len - 1))) input; assert (len > 1); let res : option (lint len & consumed_length input) = parse (parse_seq_flbytes len `parse_synth` (synth_be_int len)) input in match res with | None -> () | Some (y, _) -> if y >= pow2 (8 * (len - 1)) then begin let (y: lint len { y >= pow2 (8 * (len - 1)) } ) = y in Math.pow2_le_compat (8 * 126) (8 * len); Math.pow2_le_compat (8 * (len - 1)) 7; log256_unique y len end else () end inline_for_extraction let parse_der_length_payload_kind_weak : parser_kind = strong_parser_kind 0 126 None inline_for_extraction let parse_der_length_weak_kind : parser_kind = and_then_kind parse_u8_kind parse_der_length_payload_kind_weak let parse_der_length_weak : parser parse_der_length_weak_kind der_length_t = parse_tagged_union parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) [@@(noextract_to "krml")] let parse_bounded_der_length_payload_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = [@inline_let] let _ = der_length_payload_size_le min max in strong_parser_kind (der_length_payload_size min) (der_length_payload_size max) None let bounded_int (min: der_length_t) (max: der_length_t { min <= max }) : Tot Type = (x: int { min <= x /\ x <= max }) let parse_bounded_der_length_tag_cond (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t) : Tot bool = let len = der_length_payload_size_of_tag x in der_length_payload_size min <= len && len <= der_length_payload_size max inline_for_extraction // for parser_kind let tag_of_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) (x: bounded_int min max) : Tot (y: U8.t { parse_bounded_der_length_tag_cond min max y == true } ) = [@inline_let] let _ = der_length_payload_size_le min x; der_length_payload_size_le x max in tag_of_der_length x let parse_bounded_der_length_payload (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) : Tot (parser (parse_bounded_der_length_payload_kind min max) (refine_with_tag (tag_of_bounded_der_length min max) x)) = weaken (parse_bounded_der_length_payload_kind min max) (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) `parse_synth` (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x))) [@@(noextract_to "krml")] let parse_bounded_der_length_kind (min: der_length_t) (max: der_length_t { min <= max } ) : Tot parser_kind = and_then_kind (parse_filter_kind parse_u8_kind) (parse_bounded_der_length_payload_kind min max) let parse_bounded_der_length (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_bounded_der_length_kind min max) (bounded_int min max)) = parse_tagged_union (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) (* equality *) let parse_bounded_der_length_payload_unfold (min: der_length_t) (max: der_length_t { min <= max }) (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) (input' : bytes) : Lemma (parse (parse_bounded_der_length_payload min max x) input' == ( match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_y) else None )) = parse_synth_eq (parse_der_length_payload x `parse_filter` (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max)) (fun (y: refine_with_tag tag_of_der_length x { min <= y && y <= max }) -> (y <: refine_with_tag (tag_of_bounded_der_length min max) x)) input' ; parse_filter_eq (parse_der_length_payload x) (fun (y: refine_with_tag tag_of_der_length x) -> min <= y && y <= max) input' let parse_bounded_der_length_unfold_aux (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_bounded_der_length_payload min max x) input' with | Some (y, consumed_y) -> Some (y, consumed_x + consumed_y) | None -> None else None )) = parse_tagged_union_eq (parse_u8 `parse_filter` parse_bounded_der_length_tag_cond min max) (tag_of_bounded_der_length min max) (parse_bounded_der_length_payload min max) input; parse_filter_eq parse_u8 (parse_bounded_der_length_tag_cond min max) input let parse_bounded_der_length_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length min max) input == (match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None else None )) = parse_bounded_der_length_unfold_aux min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let len = der_length_payload_size_of_tag x in if der_length_payload_size min <= len && len <= der_length_payload_size max then let input' = Seq.slice input consumed_x (Seq.length input) in parse_bounded_der_length_payload_unfold min max (x <: (x: U8.t { parse_bounded_der_length_tag_cond min max x == true } ) ) input' else () let parse_bounded_der_length_weak (min: der_length_t) (max: der_length_t { min <= max }) : Tot (parser (parse_filter_kind parse_der_length_weak_kind) (bounded_int min max)) = parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max) `parse_synth` (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) let parse_bounded_der_length_weak_unfold (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_der_length_weak min max) input == ( match parse parse_u8 input with | None -> None | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> None | Some (y, consumed_y) -> if min <= y && y <= max then Some (y, consumed_x + consumed_y) else None end )) = parse_synth_eq (parse_der_length_weak `parse_filter` (fun y -> min <= y && y <= max)) (fun (y: der_length_t {min <= y && y <= max}) -> (y <: bounded_int min max)) input; parse_filter_eq parse_der_length_weak (fun y -> min <= y && y <= max) input; parse_tagged_union_eq parse_u8 tag_of_der_length (fun x -> weaken parse_der_length_payload_kind_weak (parse_der_length_payload x)) input let parse_bounded_der_length_eq (min: der_length_t) (max: der_length_t { min <= max }) (input: bytes) : Lemma (ensures (parse (parse_bounded_der_length min max) input == parse (parse_bounded_der_length_weak min max) input)) = parse_bounded_der_length_unfold min max input; parse_bounded_der_length_weak_unfold min max input; match parse parse_u8 input with | None -> () | Some (x, consumed_x) -> let input' = Seq.slice input consumed_x (Seq.length input) in begin match parse (parse_der_length_payload x) input' with | None -> () | Some (y, consumed_y) -> if min <= y && y <= max then (der_length_payload_size_le min y; der_length_payload_size_le y max) else () end (* serializer *) let tag_of_der_length_lt_128 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) < 128)) (ensures (x == U8.v (tag_of_der_length x))) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_invalid (x: der_length_t) : Lemma (requires (let y = U8.v (tag_of_der_length x) in y == 128 \/ y == 255)) (ensures False) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let tag_of_der_length_eq_129 (x: der_length_t) : Lemma (requires (U8.v (tag_of_der_length x) == 129)) (ensures (x >= 128 /\ x < 256)) = if x < 128 then () else let len_len = log256 x in assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (len_len - 1)) (8 * 126) let synth_der_length_129_recip (x: U8.t { x == 129uy }) (y: refine_with_tag tag_of_der_length x) : GTot (y: U8.t {U8.v y >= 128}) = tag_of_der_length_eq_129 y; U8.uint_to_t y let synth_be_int_recip (len: nat) (x: lint len) : GTot (b: Seq.lseq byte len) = E.n_to_be len x let synth_be_int_inverse (len: nat) : Lemma (synth_inverse (synth_be_int len) (synth_be_int_recip len)) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.SeqBytes.Base.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Endianness.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.DER.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.SeqBytes.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t{FStar.UInt8.v x > 129 /\ FStar.UInt8.v x < 255} -> len: Prims.nat{len == FStar.UInt8.v x % 128} -> y: LowParse.Spec.Base.refine_with_tag LowParse.Spec.DER.tag_of_der_length x -> y: LowParse.Spec.DER.lint len {y >= Prims.pow2 (8 * (len - 1))}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "FStar.UInt8.v", "Prims.op_LessThan", "Prims.nat", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.der_length_t", "LowParse.Spec.DER.tag_of_der_length", "Prims.unit", "LowParse.Math.pow2_lt_recip", "FStar.Mul.op_Star", "Prims.op_Subtraction", "LowParse.Spec.DER.log256", "FStar.Pervasives.assert_norm", "LowParse.Spec.DER.der_length_max", "Prims.pow2", "LowParse.Spec.DER.lint", "Prims.op_GreaterThanOrEqual" ]
[]
false
false
false
false
false
let synth_der_length_greater_recip (x: U8.t{U8.v x > 129 /\ U8.v x < 255}) (len: nat{len == U8.v x % 128}) (y: refine_with_tag tag_of_der_length x) : Tot (y: lint len {y >= pow2 (8 * (len - 1))}) =
assert_norm (der_length_max == pow2 (8 * 126) - 1); Math.pow2_lt_recip (8 * (log256 y - 1)) (8 * 126); y
false